Câu hỏi:

05/12/2025 12 Lưu

Một lớp học có 38 học sinh. Trong đó có 17 học sinh giỏi môn Toán, 15 học sinh giỏi môn Văn Ngữ Văn, 8 học sinh giỏi cả môn Toán và môn Ngữ Văn. Chọn ngẫu nhiên một học sinh trong lớp.

a) Số cách chọn một học sinh trong lớp 38.
Đúng
Sai
b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{4}{{19}}\).
Đúng
Sai
c) Xác suất để chọn được một học sinh hoặc giỏi môn Toán hoặc giỏi môn Ngữ Văn là \(\frac{{16}}{{19}}\).
Đúng
Sai
d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 15.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Học sinh được chọn giỏi môn Toán”; \(B\) là biến cố “Học sinh được chọn giỏi môn Văn”.

Theo đề ta có \(P\left( A \right) = \frac{{17}}{{38}};P\left( B \right) = \frac{{15}}{{38}}\).

a) Có 38 cách chọn một học sinh trong lớp.

b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{8}{{38}} = \frac{4}{{19}}\).

c) \(A \cup B\) là biến cố “Học sinh được chọn giỏi môn Toán hoặc môn Văn”.

Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{17}}{{38}} + \frac{{15}}{{38}} - \frac{8}{{38}} = \frac{{12}}{{19}}\).

d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 8.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{2}{5}\).        
B. \(\frac{2}{{45}}\).  
C. \(\frac{{11}}{{15}}\).      
D. \(\frac{7}{{15}}\).

Lời giải

\(A,B\) là hai biến cố độc lập nên \(P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)\)\( \Rightarrow P\left( B \right) = \frac{2}{{15}}:\frac{1}{3} = \frac{2}{5}\). Chọn A.

Câu 2

A. \(0,18\).                   
B. \(0,3\).                     
C. \(0,1\).                             
D. \(0,28\).

Lời giải

\(A\)\(B\) là hai biến cố độc lập nên \(A\)\(\overline B \) cũng là hai biến cố độc lập.

Ta có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) \Rightarrow P\left( B \right) = 0,5:0,8 = 0,625 \Rightarrow P\left( {\overline B } \right) = 0,375\).

\(P\left( {A\overline B } \right) = P\left( A \right) \cdot P\left( {\overline B } \right) = 0,8 \cdot 0,375 = 0,3\). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0,42\).                   
B. \(0,9\).                     
C. \(0,94\).                            
D. \(0,234\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(A\)\(B\) là hai biến cố độc lập.    
B. \(A \cap B\) là biến cố “Tổng số chấm trên mặt xuất hiện của hai lần gieo bằng 12”.    
C. \(A\)\(B\) là hai biến cố xung khắc.   
D. \(A \cup B\) là biến cố “Ít nhất một lần xuất hiện mặt 6 chấm”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP