Câu hỏi:

05/12/2025 93 Lưu

Một lớp học có 38 học sinh. Trong đó có 17 học sinh giỏi môn Toán, 15 học sinh giỏi môn Văn Ngữ Văn, 8 học sinh giỏi cả môn Toán và môn Ngữ Văn. Chọn ngẫu nhiên một học sinh trong lớp.

a) Số cách chọn một học sinh trong lớp 38.
Đúng
Sai
b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{4}{{19}}\).
Đúng
Sai
c) Xác suất để chọn được một học sinh hoặc giỏi môn Toán hoặc giỏi môn Ngữ Văn là \(\frac{{16}}{{19}}\).
Đúng
Sai
d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 15.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Học sinh được chọn giỏi môn Toán”; \(B\) là biến cố “Học sinh được chọn giỏi môn Văn”.

Theo đề ta có \(P\left( A \right) = \frac{{17}}{{38}};P\left( B \right) = \frac{{15}}{{38}}\).

a) Có 38 cách chọn một học sinh trong lớp.

b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{8}{{38}} = \frac{4}{{19}}\).

c) \(A \cup B\) là biến cố “Học sinh được chọn giỏi môn Toán hoặc môn Văn”.

Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{17}}{{38}} + \frac{{15}}{{38}} - \frac{8}{{38}} = \frac{{12}}{{19}}\).

d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 8.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.

Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).

Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).

Giả sử Bình thắng ở lần rút thứ n.

Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là

\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).

Do đó xác suất để Bình thắng là:

\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).

\(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).

Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).

Trả lời: 62.

Lời giải

a) \(P\left( A \right) = \frac{{18}}{{40}} = \frac{9}{{20}}\).

b) \(P\left( B \right) = \frac{{10}}{{40}} = \frac{1}{4}\).

c) \(P\left( {AB} \right) = \frac{6}{{40}} = \frac{3}{{20}}\).

d) \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{9}{{20}} + \frac{1}{4} - \frac{3}{{20}} = \frac{{11}}{{20}}\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Có 30 kết quả thuận lợi cho biến cố \(A\).
Đúng
Sai
b) Có 4 kết quả thuận lợi cho biến cố \(B\).
Đúng
Sai
c) Xác suất của biến cố \(A\) bằng \(\frac{1}{6}\).
Đúng
Sai
d) Xác suất để “Ba bút lấy ra từ hộp có ít nhất 1 bút màu xanh” là \(\frac{{29}}{{30}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP