Một lớp học có 38 học sinh. Trong đó có 17 học sinh giỏi môn Toán, 15 học sinh giỏi môn Văn Ngữ Văn, 8 học sinh giỏi cả môn Toán và môn Ngữ Văn. Chọn ngẫu nhiên một học sinh trong lớp.
Một lớp học có 38 học sinh. Trong đó có 17 học sinh giỏi môn Toán, 15 học sinh giỏi môn Văn Ngữ Văn, 8 học sinh giỏi cả môn Toán và môn Ngữ Văn. Chọn ngẫu nhiên một học sinh trong lớp.
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Học sinh được chọn giỏi môn Toán”; \(B\) là biến cố “Học sinh được chọn giỏi môn Văn”.
Theo đề ta có \(P\left( A \right) = \frac{{17}}{{38}};P\left( B \right) = \frac{{15}}{{38}}\).
a) Có 38 cách chọn một học sinh trong lớp.
b) Xác suất chọn được một hoc sinh giỏi cả hai môn Toán và Ngữ Văn là \(\frac{8}{{38}} = \frac{4}{{19}}\).
c) \(A \cup B\) là biến cố “Học sinh được chọn giỏi môn Toán hoặc môn Văn”.
Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{17}}{{38}} + \frac{{15}}{{38}} - \frac{8}{{38}} = \frac{{12}}{{19}}\).
d) Số cách chọn một học sinh giỏi cả hai môn Toán và Ngữ văn là 8.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.
Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).
Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).
Giả sử Bình thắng ở lần rút thứ n.
Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là
\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).
Do đó xác suất để Bình thắng là:
\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).
Vì \(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).
Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).
Trả lời: 62.
Lời giải
Quy ước gene \(A\): hạt gạo đục và gene \(a\): hạt gạo trong.
Ở thế hệ \({F_2}\) có ba kiểu gene \(AA,Aa,aa\) xuất hiện với tỉ lệ 1 : 2 : 1.
Nên tỉ lệ hạt gạo đục so với hạt gạo trong là 3 : 1.
Gọi \({A_1}\) là biến cố “Hạt gạo lấy ra lần thứ nhất là hạt gạo đục”;
\({A_2}\) là biến cố “Hạt gạo lấy ra lần thứ hai là hạt gạo đục”.
Ta có \({A_1};{A_2}\) là hai biến cố độc lập và \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = \frac{3}{4}\).
Xác suất của biến cố “Có đúng 1 hạt gạo đục trong 2 hạt gạo được lấy ra” là
\(P\left( {{A_1}\overline {{A_2}} \cup \overline {{A_1}} {A_2}} \right) = P\left( {{A_1}\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} {A_2}} \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} } \right)P\left( {{A_2}} \right) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}\).
Câu 3
A. \(\frac{1}{{35}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.