Câu hỏi:

05/12/2025 37 Lưu

Một bệnh truyền nhiễm có xác suất lây bệnh là 0,9 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,15 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Anh An tiếp xúc với một người bệnh hai lần, trong đó có một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để anh An bị lây bệnh từ người bệnh mà anh tiếp xúc đó (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Anh An bị lây bệnh từ người bệnh nếu tiếp xúc với người bệnh mà không đeo khẩu trang”. Khi đó \(P\left( A \right) = 0,9\).

Gọi \(B\) là biến cố “Anh An bị lây bệnh từ người bệnh nếu tiếp xúc với người bệnh mà có đeo khẩu trang”. Khi đó \(P\left( B \right) = 0,15\).

Gọi \(C\) là biến cố “Anh An bị lây bệnh từ người bệnh”.

\(A\)\(B\) là hai biến cố độc lập.

Khi đó \(P\left( {\overline C } \right) = P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = 0,1 \cdot 0,85 = 0,085\)

Suy ra \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - 0,085 \approx 0,92\).

Trả lời: 0,92.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.

Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).

Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).

Giả sử Bình thắng ở lần rút thứ n.

Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là

\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).

Do đó xác suất để Bình thắng là:

\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).

\(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).

Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).

Trả lời: 62.

Lời giải

Quy ước gene \(A\): hạt gạo đục và gene \(a\): hạt gạo trong.

Ở thế hệ \({F_2}\) có ba kiểu gene \(AA,Aa,aa\) xuất hiện với tỉ lệ 1 : 2 : 1.

Nên tỉ lệ hạt gạo đục so với hạt gạo trong là 3 : 1.

Gọi \({A_1}\) là biến cố “Hạt gạo lấy ra lần thứ nhất là hạt gạo đục”;

\({A_2}\) là biến cố “Hạt gạo lấy ra lần thứ hai là hạt gạo đục”.

Ta có \({A_1};{A_2}\) là hai biến cố độc lập và \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = \frac{3}{4}\).

Xác suất của biến cố “Có đúng 1 hạt gạo đục trong 2 hạt gạo được lấy ra” là

\(P\left( {{A_1}\overline {{A_2}} \cup \overline {{A_1}} {A_2}} \right) = P\left( {{A_1}\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} {A_2}} \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} } \right)P\left( {{A_2}} \right) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Có 30 kết quả thuận lợi cho biến cố \(A\).
Đúng
Sai
b) Có 4 kết quả thuận lợi cho biến cố \(B\).
Đúng
Sai
c) Xác suất của biến cố \(A\) bằng \(\frac{1}{6}\).
Đúng
Sai
d) Xác suất để “Ba bút lấy ra từ hộp có ít nhất 1 bút màu xanh” là \(\frac{{29}}{{30}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP