Một bệnh truyền nhiễm có xác suất lây bệnh là 0,9 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,15 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Anh An tiếp xúc với một người bệnh hai lần, trong đó có một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để anh An bị lây bệnh từ người bệnh mà anh tiếp xúc đó (kết quả làm tròn đến hàng phần trăm).
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,9 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,15 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Anh An tiếp xúc với một người bệnh hai lần, trong đó có một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để anh An bị lây bệnh từ người bệnh mà anh tiếp xúc đó (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Anh An bị lây bệnh từ người bệnh nếu tiếp xúc với người bệnh mà không đeo khẩu trang”. Khi đó \(P\left( A \right) = 0,9\).
Gọi \(B\) là biến cố “Anh An bị lây bệnh từ người bệnh nếu tiếp xúc với người bệnh mà có đeo khẩu trang”. Khi đó \(P\left( B \right) = 0,15\).
Gọi \(C\) là biến cố “Anh An bị lây bệnh từ người bệnh”.
Vì \(A\) và \(B\) là hai biến cố độc lập.
Khi đó \(P\left( {\overline C } \right) = P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = 0,1 \cdot 0,85 = 0,085\)
Suy ra \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - 0,085 \approx 0,92\).
Trả lời: 0,92.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Vì \(A,B\) là hai biến cố độc lập nên \(P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)\)\( \Rightarrow P\left( B \right) = \frac{2}{{15}}:\frac{1}{3} = \frac{2}{5}\). Chọn A.
Câu 2
Lời giải
Gọi \(A\) là biến cố “Người thứ nhất ném trúng rổ”; \(B\) là biến cố “Người thứ hai ném trúng rổ”;
\(C\) là biến cố “Ít nhất một vận động viên ném trúng rổ”.
Khi đó \(C = A \cup B\). Khi đó \(P\left( C \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - P\left( {\overline A } \right) \cdot P\left( {\overline B } \right) = 1 - 0,2 \cdot 0,3 = 0,94\). Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.