B. Tự luận
Tính đạo hàm
a) \(y = \sqrt {2{x^2} - 5x + 2} \);
b) \(y = \tan 2x - \frac{1}{3}\cot 4x + \sqrt {\sin x} \);
c) \(y = \frac{{{{\left( {2x + 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^3}}}\).
B. Tự luận
Tính đạo hàm
a) \(y = \sqrt {2{x^2} - 5x + 2} \);
b) \(y = \tan 2x - \frac{1}{3}\cot 4x + \sqrt {\sin x} \);
c) \(y = \frac{{{{\left( {2x + 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^3}}}\).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Cánh diều Chương 7 có đáp án !!
Quảng cáo
Trả lời:
a) \(y' = \frac{{{{\left( {2{x^2} - 5x + 2} \right)}^\prime }}}{{2\sqrt {2{x^2} - 5x + 2} }} = \frac{{4x - 5}}{{2\sqrt {2{x^2} - 5x + 2} }}\).
b) \(y' = {\left( {\tan 2x} \right)^\prime } - \frac{1}{3}{\left( {\cot 4x} \right)^\prime } + {\left( {\sqrt {\sin x} } \right)^\prime } = \frac{2}{{{{\cos }^2}2x}} + \frac{4}{{3{{\sin }^2}4x}} + \frac{{\cos x}}{{2\sqrt {\sin x} }}\).
c) \(y' = \frac{{{{\left[ {{{\left( {2x + 1} \right)}^2}} \right]}^\prime }{{\left( {x - 1} \right)}^3} - {{\left( {2x + 1} \right)}^2}{{\left[ {{{\left( {x - 1} \right)}^3}} \right]}^\prime }}}{{{{\left( {x - 1} \right)}^6}}}\)
\(\begin{array}{l} = \frac{{4\left( {2x + 1} \right){{\left( {x - 1} \right)}^3} - {{\left( {2x + 1} \right)}^2}3{{\left( {x - 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^6}}} = \frac{{4\left( {2x + 1} \right)\left( {x - 1} \right) - {{\left( {2x + 1} \right)}^2}3}}{{{{\left( {x - 1} \right)}^4}}}\\ = \frac{{ - 4{x^2} - 16x - 7}}{{{{\left( {x - 1} \right)}^4}}}.\end{array}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
\(f'\left( 3 \right) = \mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right) - f\left( 3 \right)}}{{x - 3}} = 2\). Chọn D.
Câu 2
Lời giải
a) \(y' = f'\left( x \right) = 3{x^2} - 6x\).
b) Có \({\left[ {f\left( x \right) \cdot g\left( x \right)} \right]^\prime }\)\( = {\left[ {\left( {{x^3} - 3{x^2} + 1} \right)\left( {1 - 2x} \right)} \right]^\prime }\)\( = \left( {3{x^2} - 6x} \right)\left( {1 - 2x} \right) - 2\left( {{x^3} - 3{x^2} + 1} \right)\)
\( = - 8{x^3} + 21{x^2} - 6x - 2\).
Khi đó \({\left[ {f\left( x \right) \cdot g\left( x \right)} \right]^\prime } = 0\)\( \Leftrightarrow - 8{x^3} + 21{x^2} - 6x - 2 = 0\).
Thay lần lượt \(x = 0;x = 2\) vào phương trình ta thấy không thỏa mãn.
Vậy \(T = \left\{ {0;2} \right\}\) không là tập nghiệm của phương trình\({\left[ {f\left( x \right) \cdot g\left( x \right)} \right]^\prime } = 0\).
c) Có \(y' = g'\left( x \right) = - 2\).
Hệ số góc của tiếp tuyến với đồ thị \(\left( {{C_2}} \right)\) tại điểm có hoành độ \({x_0} = 1\) bằng \( - 2\).
d) Hệ số góc của tiếp tuyến của đồ thị \(\left( {{C_1}} \right)\) tại điểm có hoành độ \({x_0} = 1\) là \(f'\left( 1 \right) = 3 \cdot {1^2} - 6 \cdot 1 = - 3\).
Với \({x_0} = 1\) thì \({y_0} = - 1\).
Phương trình tiếp tuyến cần tìm là \(y = - 3\left( {x - 1} \right) - 1 = - 3x + 2\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.