Trong không gian \(Oxyz\), cho điểm \(A\left( {2; - 3;1} \right)\) và mặt phẳng \(\left( \alpha \right):x + 2y - z + 1 = 0\). \(\left( P \right)\) là mặt phẳng đi qua \(A\) và song song với \(\left( \alpha \right)\).
Quảng cáo
Trả lời:
a) S, b) Đ, c) Đ, d) S
a) Mặt phẳng song song với \(\left( \alpha \right)\) có dạng \(x + 2y - z + m = 0\) với \(m \ne 1\).
b) Có \(\overrightarrow {{n_P}} = \left( {1;2; - 1} \right),\overrightarrow {{n_Q}} = \left( {2; - 3; - 4} \right)\).
Có \(\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} = 1.2 + 2.\left( { - 3} \right) + \left( { - 1} \right).\left( { - 4} \right) = 0\). Do đó \(\left( P \right) \bot \left( Q \right)\).
c) \(\left( P \right)\) đi qua \(A\left( {2; - 3;1} \right)\) nên \(2 + 2.\left( { - 3} \right) - 1 + m = 0 \Leftrightarrow m = 5\) (thỏa mãn).
Vậy \(\left( P \right):x + 2y - z + 5 = 0\).
d) Thay tọa độ điểm \(M\left( {1;2; - 1} \right)\) vào phương trình mặt phẳng \(\left( P \right)\) ta được:
\(1 + 2.2 - \left( { - 1} \right) + 5 \ne 0\). Vậy \(\left( P \right)\)không đi qua điểm \(M\left( {1;2; - 1} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
\(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\), \(\alpha \ne - 1\).
Câu 2
Lời giải
a) Đ, b) Đ, c) S, d) S
a) Ô tô dừng lại thì \(v\left( t \right) = 0 \Leftrightarrow - 2t + 20 = 0 \Leftrightarrow t = 10\) giây.
b) \(s\left( t \right) = \int {v\left( t \right)dt} \).
c) Quãng đường ô tô đi được từ lúc đạp phanh đến khi dừng lại là:
\(s\left( t \right) = \int\limits_0^{10} {\left( { - 2t + 20} \right)dt} = 100\) (m).
d) Quãng đường mà ô tô đi được trong 15 giây cuối bằng \(20.5 + 100 = 200\)(m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
