Thể tích \(V\) của một vật thể được giới hạn bởi hai mặt phẳng \(x = a,x = b\), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\left( {a \le x \le b} \right)\) thì được thiết diện có diện tích là \(S\left( x \right)\). Giả sử hàm số \(S\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\). Mệnh đề nào sau đây đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(V = \int\limits_a^b {S\left( x \right)dx} \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 12
Quãng đường mà vật dịch chuyển được trong 4 giây đầu tiên bằng
\(\int\limits_0^4 {v\left( t \right)dt} \)\( = \int\limits_0^2 {2tdt} + \int\limits_2^4 {4dt} \)\( = \left. {{t^2}} \right|_0^2 + \left. {4t} \right|_2^4\)\( = 4 + 16 - 8 = 12\) (m).
Câu 2
A. \( - 24\).
Lời giải
Đáp án đúng là: D
\(\int\limits_{ - 3}^2 {f\left( x \right)dx} \)\( = \int\limits_{ - 3}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \)\( = - \int\limits_{ - 3}^1 {\left| {f\left( x \right)} \right|dx} + \int\limits_1^2 {\left| {f\left( x \right)} \right|dx} \)\( = - 20 + 4 = - 16\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

