Chọn một từ mà nghĩa của nó KHÔNG cùng nhóm với các từ còn lại.
Chọn một từ mà nghĩa của nó KHÔNG cùng nhóm với các từ còn lại.
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Căn cứ vào nghĩa, từ loại,…
Dạng bài tìm từ khác loại
Lời giải
- Phân tích nghĩa của từ:
+ Chiết tự nghĩa là phân tích chữ viết (thường là chữ Hán) ra từng yếu tố.
+ Phân tán nghĩa là chia nhỏ và phân ra nhiều hướng, nhiều nơi khác nhau.
+ Chia cắt nghĩa là phân ra thành nhiều đoạn, nhiều phần tách biệt nhau, làm cho không còn nguyên vẹn nữa.
+ Phân tích nghĩa là phân chia một đối tượng nhận thức ra thành các yếu tố
- Điểm chung của các từ trên là đều có nét nghĩa “chia thành các phần khác nhau từ một sự vật”.
- Tuy nhiên, từ “phân tán” còn có nét nghĩa “phân ra nhiều hướng, nhiều nơi khác nhau” (nghĩa của từ “tán”)
=> Từ mà nghĩa của nó KHÔNG cùng nhóm với các từ còn lại là: Phân tán.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là A
Phương pháp giải
Áp dụng công thức: \({v^2} - v_0^2 = 2as\)
Sử dụng kết hợp định luật II và III Newton.
Lời giải
Sau khi 2 vật rời nhau và giao tốc cùng như nhau nên ta có gia tốc chuyển động của hai vật là:
\(a = \frac{{0 - v_1^2}}{{2{s_1}}} = \frac{{0 - v_2^2}}{{2{s_2}}}\)
\( \Rightarrow \frac{{{v_1}}}{{{v_2}}} = \sqrt {\frac{{{s_1}}}{{{s_2}}}} \)
Áp dụng định luật III Newton ta có: \(\overrightarrow {{F_{21}}} = - \overrightarrow {{F_{12}}} \Rightarrow {m_1}{a_1} = {m_2}{a_2}\)
\( \Rightarrow \frac{{{m_1}}}{{{m_2}}} = \frac{{{a_2}}}{{{a_1}}} = \frac{{{v_2}}}{{{v_1}}} = \sqrt {\frac{{{s_1}}}{{{s_2}}}} \)
\( \Rightarrow \frac{{{s_1}}}{{{s_2}}} = {\left( {\frac{{{m_1}}}{{{m_2}}}} \right)^2} = \frac{1}{4}\)
Lời giải
Đáp án đúng là "34"
Phương pháp giải
Vận dụng công thức tính lực điện.
Vận dụng kiến thức động lực học để xác định các lực tác dụng.
Áp dụng công thức tính quãng đường.
Lời giải
Chọn chiều dương là chiều chuyển động của (e), bỏ qua tác dụng của trọng lực nên:
\( - {F_d} = m{a_1} \Leftrightarrow - |q|E = m{a_1} \Leftrightarrow - \frac{{|q|U}}{{md}} = - 1,{6.10^{14}}\,\,\left( {\;{\rm{m}}/{{\rm{s}}^2}} \right)\)
Quãng đường (e) đi được kể từ t = 0 đến khi dừng lại lần đầu tiên là: \({s_1} = - \frac{{v_0^2}}{{2{a_1}}} = 3,{2.10^{ - 2}}\,(\;{\rm{m}})\)
Thời gian chuyển động của (e ) ứng với quãng đường s1 là: \({t_1} = \frac{{ - {v_0}}}{{{a_1}}} = {20.10^{ - 9}}(s)\)
Sau khi dừng lại, (e ) sẽ chuyển động nhanh dần đều ngược chiều đường sức với gia tốc:
\({a_2} = - {a_1} = 1,{6.10^{14}}\,\,\left( {{\rm{m}}/{{\rm{s}}^2}} \right)\)
khoảng thời gian chuyển động còn lại là: \({t_2} = t - {t_1} = {5.10^{ - 9}}(\;{\rm{s}})\)
Quãng đường đi được trong khoảng thời gian t2 là: \(\frac{{{a_2}.t_2^2}}{2} = {2.10^{ - 3}}\;{\rm{m}}\)
Tổng quãng đường mà (e) đi được là: \(S = {s_1} + {s_2} = 3,{4.10^{ - 2}}(\;{\rm{m}}) = 3,4(\;{\rm{cm}}) = 34\;{\rm{mm}}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

