Cho hệ bất phương trình \(\left\{ \begin{array}{l}0 \le y \le 5\\x \ge 0\\x + y - 2 \ge 0\\x - y - 2 \le 0\end{array} \right.\) có miền nghiệm là \(S\).
Cho hệ bất phương trình \(\left\{ \begin{array}{l}0 \le y \le 5\\x \ge 0\\x + y - 2 \ge 0\\x - y - 2 \le 0\end{array} \right.\) có miền nghiệm là \(S\).
a) \(\left( {1;2} \right) \notin S\).
b) \(\left( {2;2} \right) \in S\).
c) Miền nghiệm \(S\) là miền tam giác.
Câu hỏi trong đề: Đề kiểm tra Toán 10 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
a) Thay \(\left( {1;2} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l}0 \le 2 \le 5\\1 \ge 0\\1 + 2 - 2 \ge 0\\1 - 2 - 2 \le 0\end{array} \right.\) (đúng).
Vậy \(\left( {1;2} \right) \in S\).
b) Thay \(\left( {2;2} \right)\) vào hệ bất phương ta được \(\left\{ \begin{array}{l}0 \le 2 \le 5\\2 \ge 0\\2 + 2 - 2 \ge 0\\2 - 2 - 2 \le 0\end{array} \right.\) (đúng).
Vậy \(\left( {2;2} \right) \in S\).
c) Vẽ các đường thẳng \(y = 5;x + y - 2 = 0;x - y - 2 = 0\) trên mặt phẳng tọa độ.
Ta có điểm \(\left( {2;2} \right)\) thuộc miền nghiệm của hệ bất phương trình.
Khi đó miền nghiệm của hệ bất phương trình là miền của tứ giác \(ABCD\) (kể cả các cạnh của tứ giác) (phần tô màu) với \(A\left( {2;0} \right),B\left( {0;2} \right),C\left( {0;5} \right),D\left( {7;5} \right)\).

d) Giá trị nhỏ nhất của biểu thức \(F = x - 2y\) đạt được tại một trong 4 điểm \(A\left( {2;0} \right),B\left( {0;2} \right),C\left( {0;5} \right),D\left( {7;5} \right)\).
Ta có \(F\left( {2;0} \right) = 2 - 2 \cdot 0 = 2\);
\(F\left( {0;2} \right) = 0 - 2 \cdot 2 = - 4\);
\(F\left( {0;5} \right) = 0 - 2 \cdot 5 = - 10\);
\(F\left( {7;5} \right) = 7 - 2 \cdot 5 = - 3\).
Vậy giá trị nhỏ nhất của biểu thức \(F\) là \( - 10\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
\(\left\{ \begin{array}{l}2x > 0\\ - x + 2y < 2\end{array} \right.\) là hệ bất phương trình bậc nhất hai ẩn. Chọn B.
Câu 2
Lời giải
\(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3\)\( \Leftrightarrow 3x + 2y + 6 > 4x + 4 - y + 3\)\( \Leftrightarrow x - 3y + 1 < 0\).
Thay tọa độ điểm \(\left( {1;2} \right)\) vào bất phương trình ta được \(1 - 3 \cdot 2 + 1 = - 4 < 0\) (đúng).
Vậy điểm \(\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình. Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Số tiền mua vở viết là \(8x\) (nghìn đồng), số tiền mua bút là \(5y\) (nghìn đồng).
b) Để Bình trả đủ tiền mua bút và vở viết thì ta có bất phương trình bậc nhất hai ẩn \(x,y\) là \(8x + 5y \le 250\).
c) Với số tiền mẹ cho, Bình có thể mua được 20 quyển vở và 20 chiếc bút để đem ủng hộ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

