Câu hỏi:

18/12/2025 5 Lưu

Cho hệ bất phương trình \(\left\{ \begin{array}{l}0 \le y \le 5\\x \ge 0\\x + y - 2 \ge 0\\x - y - 2 \le 0\end{array} \right.\) có miền nghiệm là \(S\).

a) \(\left( {1;2} \right) \notin S\).

Đúng
Sai

b) \(\left( {2;2} \right) \in S\).

Đúng
Sai

c) Miền nghiệm \(S\) là miền tam giác.

Đúng
Sai
d) Cặp số \(\left( {x;y} \right) \in S\) làm biểu thức \(F = x - 2y\) đạt giá trị nhỏ nhất bằng \( - 12\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Thay \(\left( {1;2} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l}0 \le 2 \le 5\\1 \ge 0\\1 + 2 - 2 \ge 0\\1 - 2 - 2 \le 0\end{array} \right.\) (đúng).

Vậy \(\left( {1;2} \right) \in S\).

b) Thay \(\left( {2;2} \right)\) vào hệ bất phương ta được \(\left\{ \begin{array}{l}0 \le 2 \le 5\\2 \ge 0\\2 + 2 - 2 \ge 0\\2 - 2 - 2 \le 0\end{array} \right.\) (đúng).

Vậy \(\left( {2;2} \right) \in S\).

c) Vẽ các đường thẳng \(y = 5;x + y - 2 = 0;x - y - 2 = 0\) trên mặt phẳng tọa độ.

Ta có điểm \(\left( {2;2} \right)\) thuộc miền nghiệm của hệ bất phương trình.

Khi đó miền nghiệm của hệ bất phương trình là miền của tứ giác \(ABCD\) (kể cả các cạnh của tứ giác) (phần tô màu) với \(A\left( {2;0} \right),B\left( {0;2} \right),C\left( {0;5} \right),D\left( {7;5} \right)\).

Cho hệ bất phương trình 0 bé hơn bằng y bé hơn bằng 5 , x lớn hơn bằng 0 (ảnh 1)

d) Giá trị nhỏ nhất của biểu thức \(F = x - 2y\) đạt được tại một trong 4 điểm \(A\left( {2;0} \right),B\left( {0;2} \right),C\left( {0;5} \right),D\left( {7;5} \right)\).

Ta có \(F\left( {2;0} \right) = 2 - 2 \cdot 0 = 2\);

\(F\left( {0;2} \right) = 0 - 2 \cdot 2 = - 4\);

\(F\left( {0;5} \right) = 0 - 2 \cdot 5 = - 10\);

\(F\left( {7;5} \right) = 7 - 2 \cdot 5 = - 3\).

Vậy giá trị nhỏ nhất của biểu thức \(F\)\( - 10\).

Đáp án: a) Sai;    b) Đúng;    c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ \begin{array}{l}2xy > 1\\x - 2y < 2\end{array} \right.\).                
B. \(\left\{ \begin{array}{l}2x > 0\\ - x + 2y < 2\end{array} \right.\).                        
C. \(\left\{ \begin{array}{l} - {x^2} + 2y < 2\\3x - y > - 6\end{array} \right.\).        
D. \(\left\{ \begin{array}{l}2x + y < 1\\3x - z > - 6\end{array} \right.\).

Lời giải

\(\left\{ \begin{array}{l}2x > 0\\ - x + 2y < 2\end{array} \right.\) là hệ bất phương trình bậc nhất hai ẩn. Chọn B.

Câu 2

A. \(\left( {3;0} \right)\). 
B. \(\left( {3;1} \right)\).  
C. \(\left( {1;2} \right)\). x
C. \(\left( {1;2} \right)\). D. \(\left( {0;0} \right)\).

Lời giải

\(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3\)\( \Leftrightarrow 3x + 2y + 6 > 4x + 4 - y + 3\)\( \Leftrightarrow x - 3y + 1 < 0\).

Thay tọa độ điểm \(\left( {1;2} \right)\) vào bất phương trình ta được \(1 - 3 \cdot 2 + 1 = - 4 < 0\) (đúng).

Vậy điểm \(\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình. Chọn C.

Câu 3

A. \(2x - y \le 3\).       
B. \(x - y \ge 3\).         
C. \(2x - y \ge 3\).       
D. \(2x + y \ge 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

  A. \(Q\left( {1;1} \right)\).                                         
B. \(N\left( { - 2;1} \right)\).     
C. \(M\left( {1; - 2} \right)\).                                     
D. \(P\left( { - 1; - 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Số tiền mua vở viết là \(8x\) (nghìn đồng), số tiền mua bút là \(5y\) (nghìn đồng).

Đúng
Sai

b) Để Bình trả đủ tiền mua bút và vở viết thì ta có bất phương trình bậc nhất hai ẩn \(x,y\)\(8x + 5y \le 250\).

Đúng
Sai

c) Với số tiền mẹ cho, Bình có thể mua được 20 quyển vở và 20 chiếc bút để đem ủng hộ.

Đúng
Sai
d) Nếu Bình đã mua 20 chiếc bút thì Bình có thể mua tối đa 19 quyển vở.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP