Câu hỏi:

18/12/2025 73 Lưu

Cho một viên gạch men có dạng hình vuông \(OABC\) như hình vẽ. Sau khi tọa độ hóa, ta có \(O\left( {0;0} \right),A\left( {0;1} \right),B\left( {1;1} \right),C\left( {1;0} \right)\) và hai đường cong lần lượt là đồ thị hàm số \(y = {x^3}\)\(y = \sqrt[3]{x}\).

a) S, b) Đ, c) Đ, d) S (ảnh 1)

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).
Đúng
Sai
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) có giá trị bằng \(\frac{3}{4}\) (đvdt).
Đúng
Sai
c) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\)\(y = \sqrt[3]{x}\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left( {{x^3} - \sqrt[3]{x}} \right)dx} \).
Đúng
Sai
d) Diện tích phần không được tô đậm trên viên gạch mem có giá trị bằng \(\frac{1}{2}\) (đvdt).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) S, d) Đ

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).

b) Ta có \({S_1} = \int\limits_0^1 {\left| {{x^3}} \right|dx}  = \left. {\frac{{{x^4}}}{4}} \right|_0^1 = \frac{1}{4}\).

c) \({S_2} = \int\limits_0^1 {\left| {{x^3} - \sqrt[3]{x}} \right|dx} \)\( = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx} \).

d) Ta có \({S_2} = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx}  = \frac{1}{2}\)

Diện tích phần không tô đậm là \({S_3} = {S_{OABC}} - {S_2} = 1 - \frac{1}{2} = \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi \(A\) là biến cố “Sản phẩm đó do máy thứ nhất sản xuất”

B là biến cố “Sản phẩm đó đạt tiêu chuẩn”.

Theo đề ta có: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\); \(P\left( {B|A} \right) = 0,9;P\left( {B|\overline A } \right) = 0,85\).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,6.0,9 + 0,4.0,85 = 0,88\).

Ta có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,9}}{{0,88}} \approx 0,614\).

Câu 2

a) \(F'\left( 0 \right) = 0\).
Đúng
Sai
b) \(F\left( 1 \right) = e - 1\).
Đúng
Sai
c) \(\int {F\left( x \right)} dx = {e^x} - \frac{{{x^3}}}{3} + C\).
Đúng
Sai
d) \(\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = \ln \left| x \right|} - 2{e^x} + C\).
Đúng
Sai

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Có \(F'\left( x \right) = f\left( x \right)\). Suy ra \(F'\left( 0 \right) = f\left( 0 \right) = {e^0} - 2.0 = 1\).

b) Có \(F\left( x \right) = \int {\left( {{e^x} - 2x} \right)dx} = {e^x} - {x^2} + C\).

\(F\left( 0 \right) = 1\) nên \(F\left( 0 \right) = {e^0} - 0 + C = 1 \Rightarrow C = 0\).

Do đó \(F\left( x \right) = {e^x} - {x^2}\). Suy ra \(F\left( 1 \right) = {e^1} - {1^2} = e - 1\).

c) \(\int {F\left( x \right)} dx = \int {\left( {{e^x} - {x^2}} \right)dx} = {e^x} - \frac{{{x^3}}}{3} + C\).

d) \[\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = } \int {\frac{{{e^x} - 2x}}{{x{e^x}}}dx = } \int {\left( {\frac{1}{x} - 2{e^{ - x}}} \right)dx} = \ln \left| x \right| + 2{e^{ - x}} + C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      
B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP