Cho tam giác đều ABC có đường cao AH. Trên cạnh BC lấy điểm M tùy ý (M không trùng B,H,C). Gọi P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC.
a) Chứng minh MP + MQ = AH
b) Gọi K là trung điểm của AM. Chứng minh rằng KH \( \bot \) PQ
c) Cho đường tròn (O) nội tiếp tam giác ABM. Gọi D,E,F theo thứ tự là tiếp điểm của (O) với các cạnh BM,AB,AM. Vẽ DN vuông góc với EF tại N. Chứng minh \(\widehat {BNE} = \widehat {MNF}\)
Cho tam giác đều ABC có đường cao AH. Trên cạnh BC lấy điểm M tùy ý (M không trùng B,H,C). Gọi P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC.
a) Chứng minh MP + MQ = AH
b) Gọi K là trung điểm của AM. Chứng minh rằng KH \( \bot \) PQ
c) Cho đường tròn (O) nội tiếp tam giác ABM. Gọi D,E,F theo thứ tự là tiếp điểm của (O) với các cạnh BM,AB,AM. Vẽ DN vuông góc với EF tại N. Chứng minh \(\widehat {BNE} = \widehat {MNF}\)
Quảng cáo
Trả lời:
a) Trong \(\Delta \)BMP vuông ở P. ta có: \(MP = MB.\sin MBP = MB.sin60^\circ = \frac{{\sqrt 3 }}{2}MB\)
Tương tự, ta chứng minh được: \(MQ = \frac{{\sqrt 3 }}{2}MC\)
Vậy \(MP + MQ = \frac{{\sqrt 3 }}{2}BC = AH\)
b) Do \(\widehat {APM} = \widehat {AQM} = \widehat {AHM}\) = 90 ° nên A, M, P, Q, H cùng nằm trên đường tròn đường kính AM. Do đó, K là tâm của đường tròn này\( \Rightarrow \) KP = KH = KQ
Trong \(\Delta \) PKH cân ở K có \(\widehat {PHK} = \widehat {2PAH} = 2\widehat {BAH}\)=2. 30 °=\(60^\circ .\;\)Vậy \(\Delta \) PKH đều \( \Rightarrow HP = HK\;\left( 1 \right)\)
Tương tự, là chứng minh được \(\Delta \)QKH đều \( \Rightarrow \;HQ = HK\;\left( 2 \right)\)
Từ (1), (2) ta được:
\(\left. {\begin{array}{*{20}{c}}{HQ = HK}\\{M\`a \;PQ = PK}\end{array}} \right\} \Rightarrow PQ\) là đường trung trực của \(HK \Rightarrow PQ \bot HK\)
c) Gọi B', M' lần lượt là hình chiếu của B, M lên EF. Khi đó do BB'||DN||MM' Gọi N là giao điểm của DN và BM.
Áp dụng định lý Thales trong \(\Delta \) BMM'; \(\Delta \) M'BB' có BB'||DN|| MM'; D \( \in BM;N' \in BM';N \in B'M',\;\) ta có:
\(\left. {\begin{array}{*{20}{c}}{\frac{{MD}}{{DB}} = \frac{{M'N'}}{{N'B}}}\\{\frac{{M'N'}}{{N'B}} = \frac{{M'N}}{{NB'}}}\end{array}} \right\} \Rightarrow \frac{{BD}}{{DM}} = \frac{{B'N}}{{NM'}}\;\left( 3 \right)\)
Xét \(\Delta \)BB'E và \(\Delta \) MM'F , ta có:
\(\widehat {BB'E} = \widehat {MM'F} = 90^\circ \)
\(\widehat {BEB'} = \widehat {AEF} = \widehat {AFE}\) (\(\Delta \;AEF\;\)cân tại F do AE = AF theo tính chất tiếp tuyến )
\( = \widehat {MFM'}\)
Vậy \(\Delta \;BB'E\;\~\;\Delta \;\;MM'F\;\left( {g.g} \right) \Rightarrow \frac{{B'E}}{{M'F}} = \frac{{BE}}{{MF}} = \frac{{BD}}{{DM}}\;\)(4) ( do \(BE = BD\;;MF = MD\;\)theo tính chất tiếp tuyến )
Từ (3) và (4 ), ta được \(\frac{{B'M}}{{NM'}} = \frac{{B'E}}{{M'F}} = \frac{{B'N - B'E}}{{\;NM' - M'F}} = \frac{{EN}}{{FN}}\)
Xét \(\Delta \;BNE\;v\`a \;\Delta \;MNF,\;ta\;c\'o :\)
\(\widehat {BEN} = \widehat {MFN}\)
\(\frac{{EN}}{{FN}} = \frac{{B'N}}{{MN'}} = \frac{{BE}}{{MF}}\;\left( {CMT} \right)\)
Vậy
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện \(2x + 1 \ge 0 \Leftrightarrow x \ge - \frac{1}{2}\)
Phương trình viết lại thành:
\(36{x^2} - 212x + 284 = 4\sqrt {2x + 1} \;\)
\(\;\;\;\;\;\;\;\; \Leftrightarrow 36{x^2} - 212x + 284 + 8x + 5 = 4\left( {2x + 1} \right) + 4\sqrt {2x + 1} + 1\)
\( \Leftrightarrow 36{x^2} - 204x + 289 = 4\left( {2x + 1} \right) + 4\sqrt {2x + 1} + 1\)
\( \Leftrightarrow {\left( {6x - 17} \right)^2} = {\left( {2\sqrt {2x + 1} + 1} \right)^2}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2\sqrt {2x + 1} + 1 = 6x - 17\;\left( 1 \right)}\\{2\sqrt {2x + 1} + 1 = 17 - 6x\;\left( 2 \right)}\end{array}} \right.\)
Xét (1), ta có:
(1)\( \Leftrightarrow 2\sqrt {2x + 1} = 6x - 18\)
\(\;\; \Leftrightarrow 2\sqrt {2x + 1} = 3\left( {2x + 1} \right) - 21\;\left( {1'} \right)\;\)
Đặt \(t = \sqrt {2x + 1} \ge 0\;\)ta có:
\(\left( {1'} \right) \Leftrightarrow 3{t^2} - 2t - 21 = 0\)
\( \Leftrightarrow \left( {t - 3} \right)\left( {3t + 7} \right) = 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t - 3 = 0}\\{3t + 7 = 0}\end{array}} \right.\)
Xét (2), ta có:
\(\left( 2 \right) \Leftrightarrow 6x + 2\sqrt {2x + 1} - 16 = 0\)
\( \Leftrightarrow 3\left( {2x + 1} \right) + 2\sqrt {2x + 1} - 19 = 0\)
Đặt \(t = \sqrt {2x + 1} \ge 0\) ta có:
\(\left( {2'} \right) \Leftrightarrow 3{t^2} + 2t - 19 = 0\)
Giải phương trình này ta được hai nghiệm \({t_1} = \frac{{ - 1 + \sqrt {58} }}{3}\;\left( {nhan} \right);{t_2} = \frac{{ - 1 - \sqrt {58} }}{3}\left( {loai} \right)\;\)
Với \({t_1} = \frac{{ - 1 + \sqrt {58} }}{3}\;\) ta được:
\(\sqrt {2x + 1} = \frac{{ - 1 + \sqrt {58} }}{3}\)\( \Leftrightarrow 2x + 1 = \frac{{59 - 2\sqrt {58} }}{9}\) \( \Leftrightarrow 2x = \frac{{50 - 2\sqrt {58} }}{9}\;\) \( \Leftrightarrow x = \frac{{25 - \sqrt {58} }}{9}\;\left( {nhan} \right)\)
Vậy \(S = \left\{ {\frac{{25 - \sqrt {58} }}{9};4} \right\}\)
Lời giải
a) Ta áp dụng tính chất a - S (a) \( \vdots \) 9 với mọi số nguyên dương a (bạn đọc tự chứng minh tính chất này)
Vậy ( a + b - S(a) = a + b - S(a+b)\( \vdots \)9
\( \Rightarrow \left( {a - S\left( a \right)} \right) + b \vdots 9 \Rightarrow b \vdots 9\)
Tương tự , ta được \(a \vdots 9.\) Vậy a , b chia hết cho 9 (đpcm)
b) Phương trình viết lại:
\(2{x^2} + 2x + 1 = 2{y^4} + 4{y^3} + 6{y^2} + 4y + 1\)
\( \Rightarrow 2{x^2} + 2x + 2 = 2{y^4} + 4{y^3} + 6{y^2} + 4y + 2\;\)
\(\;\;\;\; \Rightarrow {x^2} + x + 1 = {\left( {{y^2} + y + 1} \right)^2}\)
Vậy từ đây ta được \({x^2} + x + 1\) là số chính phương hay \(4{x^2} + 4x + 4 = {\left( {2x + 1} \right)^2} + 3\;\)là số chính phương.
Đặt (**)
Ta có:
\(\left( {**} \right) \Leftrightarrow {t^2} - {\left( {2x + 1} \right)^2} = 3\)
\( \Leftrightarrow \left( {t - 2x - 1} \right)\left( {t + 2x + 1} \right) = 3\)
Xét tất cả các trường hợp sau:
|
\(t - 2x - 1\) |
1 |
3 |
-1 |
-3 |
|
\(t + 2x + 1\) |
3 |
1 |
-3 |
-1 |
|
\(t\) |
2 |
2 |
-2 |
-2 |
|
\(x\) |
0 |
-1 |
-1 |
0 |
Vậy \(x = 0\;v\`a \;x = - 1\)
Với x = 0 thay vào (*), ta được:
(*)\( \Leftrightarrow {\left( {{y^2} + y + 1} \right)^2} = 1\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{y^2} + y + 1 = 1 \Leftrightarrow {y^2} + y = 0 \Leftrightarrow y\left( {y + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y = 0}\\{y = - 1}\end{array}} \right.}\\{{y^2} + y + 1 = - 1\left( {v\^o \;nghiem} \right)}\end{array}} \right.\)
Với x = - 1 thay vào (*), ta được:
(*)\(\; \Leftrightarrow {\left( {{y^2} + y + 1} \right)^2} = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y = 0}\\{y = - 1}\end{array}} \right.\)
Vậy phương trình có các nghiệm (x; y) = (0; 0); (0; - 1); (- 1; 0); (- 1; - 1)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.