(2,5 điểm) Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Lấy điểm \[M\] thuộc \[\left( O \right)\] sao cho \[MA < MB.\]Vẽ dây \[MN\] vuông góc với \[AB\] tại \[H\]. Đường thẳng \[AN\] cắt \[BM\] tại \[C\]. Đường thẳng qua \[C\] vuông góc với \[AB\] tại \[K\] và cắt \[BN\] tại \[D\]. Chứng minh rằng:
a) \[A,M,C,K\] cùng thuộc một đường tròn.
a) \[A,M,C,K\] cùng thuộc một đường tròn.
Quảng cáo
Trả lời:
![a) \[A,M,C,K\] cùng thuộc một đường tròn. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/13-1766501482.png)
a) Ta có: \[\widehat {AMB} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn). Suy ra \[\widehat {AMC} = 90^\circ \] (cùng bù với \[\widehat {AMB}\]).
Gọi \[E\] là trung điểm của \[CA\].
Xét \[\Delta AMC\] vuông tại \[M\] có \[ME\] là đường trung tuyến ứng với cạnh huyền \[CA\] nên \[ME = \frac{1}{2}CA.\]
Xét \[\Delta AKC\] vuông tại \[K\] có \[KE\] là đường trung tuyến ứng với cạnh huyền \[CA\] nên \[KE = \frac{1}{2}CA.\]
Do đó, \[KE = ME = EC = EA = \frac{1}{2}CA\] nên bốn điểm \[A,M,C,K\] cùng thuộc một đường tròn tâm \[E\] đường kính \[CA\].
Câu hỏi cùng đoạn
Câu 2:
b) \[BK\] là tia phân giác của \[\widehat {CBD}\] và \[\Delta KMC\] cân .
b) ⦁ Xét \(\Delta OMN\) cân tại \(O\) (do \(OM = ON)\) nên đường cao \(OH\) đồng thời là đường trung tuyến, hay \(H\) là trung điểm của \(MN\).
Xét \[\Delta MNB\] có \[BH\] là đường cao và cũng là đường trung tuyến của \[\Delta MNB\] nên \[\Delta MNB\] cân tại \[B\].
Suy ra \[BH\] cũng là đường phân giác của \[\widehat {MBN}\].
Hay \[BK\] là đường phân giác của \[\widehat {CBD}\].
⦁ Xét \[\Delta BCD\] có \[BK\] vừa là đường cao, vừa là đường phân giác của \[\Delta BCD\] nên \[\Delta BCD\] cân tại \[B\]
Do đó \[\widehat {BCD} = \widehat {BDC}\]. (1)
Ta có: \[\widehat {CDB} = \widehat {KAC}\] (cùng phụ với \[\widehat {DCA}\]) (2)
Xét đường tròn \[\left( E \right)\] có \[\widehat {KAC} = \widehat {KMC}\] (góc nội tiếp cùng chắn cung \[KC\]) (3)
Từ (1), (2) và (3) suy ra \[\widehat {BCD} = \widehat {KMC} = \widehat {BDC} = \widehat {KAC}\]
Xét \[\Delta KMC\] có \[\widehat {KCM} = \widehat {KMC}\] nên \[\Delta KMC\] cân tại \[K\].
Câu 3:
c) \[KM\] là tiếp tuyến của đường tròn \[\left( O \right)\].
c) Xét \[\Delta BOM\] cân tại \[O\] (do \[OM = OB\]) ta có \[\widehat {OMB} = \widehat {OBM}\].
Mà \[\widehat {OBM} = \widehat {OBD}\] (do \[BK\] là đường phân giác của \[\widehat {CBD}\]).
Suy ra \[\widehat {OMB} = \widehat {OBD}.\]
Xét \(\Delta BDK\) vuông tại \(K,\) ta có: \[\widehat {OBD} + \widehat {BDK} = 90^\circ \]
Mà \[\widehat {OMB} = \widehat {OBD}\] và \[\widehat {BDK} = \widehat {KMC}\] nên \[\widehat {OMB} + \widehat {KMC} = 90^\circ \]
Do đó, \[\widehat {KMO} = 180^\circ - \left( {\widehat {OMB} + \widehat {KMC}} \right) = 180^\circ - 90^\circ = 90^\circ \].
Suy ra \[KM \bot MO\] tại \[M\] thuộc đường tròn \[\left( O \right)\].
Vậy \[KM\] là tiếp tuyến của đường tròn \[\left( O \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Điều kiện xác định \(x \ne 0,\,\,x \ne - 1\).
\(\frac{{x - 1}}{x} + \frac{1}{{x + 1}} = \frac{{2x + 1}}{{{x^2} + x}}\)
\(\frac{{x - 1}}{x} + \frac{1}{{x + 1}} = \frac{{2x + 1}}{{x\left( {x + 1} \right)}}\)
\(\frac{{\left( {x - 1} \right)\left( {x + 1} \right) + x}}{{x\left( {x + 1} \right)}} = \frac{{2x + 1}}{{x\left( {x + 1} \right)}}\)
\({x^2} - 1 + x = 2x + 1\)
\({x^2} + x - 2x - 2 = 0\)
\(x\left( {x + 1} \right) - 2\left( {x + 1} \right) = 0\)
\(\left( {x + 1} \right)\left( {x - 2} \right) = 0\)
\(x + 1 = 0\) hoặc \(x - 2 = 0\)
\(x = - 1\) (loại) hoặc \(x = 2\) (thỏa mãn)
Vậy phương trình có nghiệm là \(x = 2\).Lời giải
a) ⦁ Xét biểu thức \(A = \frac{1}{3} - \frac{1}{{\sqrt x }}\).
Điều kiện xác định của biểu thức \(A\) là \(x \ge 0\) và \(\sqrt x \ne 0\), tức là \(x > 0.\)
⦁ Xét biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x - 3}} - \frac{{\sqrt x - 3}}{{\sqrt x + 3}}\).
Điều kiện xác định của biểu thức \(B\) là \(x \ge 0,\,\,\sqrt x - 3 \ne 0\) và \(\sqrt x + 3 \ne 0.\)
Với \(x \ge 0\) ta thấy \(\sqrt x + 3 > 0\) và \(\sqrt x - 3 \ne 0\) khi \(x \ne 9.\)
Vậy điều kiện xác định của biểu thức \(A\) là \(x > 0\) và điều kiện xác định của biểu thức \(B\) là \(x \ge 0\), \(x \ne 9.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
