Trong không gian với hệ trục \[Oxyz\], cho điểm \(A\left( {1; - 2;0} \right)\) và hai mặt phẳng \(\left( P \right):x - y + z = 0\);\(\left( Q \right):2x - z + 1 = 0\). Đường thẳng đi qua \(A\) song song với \(\left( P \right)\)và \(\left( Q \right)\) có phương trình là
Trong không gian với hệ trục \[Oxyz\], cho điểm \(A\left( {1; - 2;0} \right)\) và hai mặt phẳng \(\left( P \right):x - y + z = 0\);\(\left( Q \right):2x - z + 1 = 0\). Đường thẳng đi qua \(A\) song song với \(\left( P \right)\)và \(\left( Q \right)\) có phương trình là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: mặt phẳng \(\left( P \right):x - y + z = 0\) có một vectơ pháp tuyến là \({\overrightarrow n _{\left( P \right)}} = \left( {1; - 1;1} \right)\).
Mặt phẳng \(\left( Q \right):2x - z + 1 = 0\) có một vectơ pháp tuyến là \({\overrightarrow n _{\left( Q \right)}} = \left( {2;0; - 1} \right)\).
\( \Rightarrow \left[ {{{\overrightarrow n }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right] = \left( {1;3;2} \right)\)
Đường thẳng đi qua \(A\left( {1; - 2;0} \right)\) song song với \(\left( P \right)\)và \(\left( Q \right)\) nên nhận \(\left[ {{{\overrightarrow n }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right] = \left( {1;3;2} \right)\) làm vectơ chỉ phương.
Phương trình chính tắc của đường thẳng là: \(\frac{{x - 1}}{1} = \frac{{y + 2}}{3} = \frac{z}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Diện tích hình phẳng đã cho được tính bởi công thức \(S = \int\limits_0^2 {{3^x}} dx\).
Lời giải
Trả lời: 4
Ta có \(F\left( x \right) = \int {{e^{2x}}dx = \frac{1}{2}{e^{2x}} + C} \).
Theo giả thiết \(F\left( 0 \right) = 0 \Leftrightarrow \frac{1}{2}{e^0} + C = 0 \Leftrightarrow C = - \frac{1}{2}\).
Khi đó \(F\left( x \right) = \frac{1}{2}{e^{2x}} - \frac{1}{2} \Rightarrow F\left( {\ln 3} \right) = \frac{1}{2}{e^{2\ln 3}} - \frac{1}{2} = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
B. \(N\left( {0; - 2;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
