CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \[499\].

\[\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty  \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } \left[ {2f\left( x \right) - {f^2}\left( x \right)} \right] =  - \infty \] nên không tồn tại \[\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right)\].\[\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 1 \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \left[ {\sqrt {2f\left( x \right) - {f^2}\left( x \right)}  + m} \right] = 1 + m\].\[\mathop {\lim }\limits_{x \to  - \infty } \left[ {\sqrt {{x^2} + 1000x}  + x} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{1000x}}{{\sqrt {{x^2} + 1000x}  - x}}} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{1000}}{{ - \sqrt {1 + 1000/x}  - 1}}} \right] =  - 500.\]

\[\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) = \frac{{ - 500}}{{1 + m}}\left( {m \ne  - 1} \right)\] suy ra tiệm cận ngang của đồ thị hàm số \[g\left( x \right)\] là đường thẳng \[y = \frac{{ - 500}}{{1 + m}}\]

Để đồ thị hàm số \[g\left( x \right)\] có tiệm cận ngang nằm dưới đường thẳng \[y =  - 1\] khi và chỉ khi \[\frac{{ - 500}}{{1 + m}} <  - 1 \Leftrightarrow \frac{{m - 499}}{{m + 1}} < 0 \Leftrightarrow  - 1 < m < 499\] mà \[m\] nguyên thuộc \[\left[ { - 2020;2020} \right]\] nên \[m \in \left\{ {0;1;2;...;498} \right\}\].

Vậy có \[498 - 0 + 1 = 499\] giá trị nguyên của \[m\].

Lời giải

Đáp án: \(15\)

Từ giả thiết, điểm \(M\) thuộc mặt phẳng \(\left( P \right):x + 2y - z - 1 = 0\);

Có \(MA = MB\), suy ra \(M\) thuộc mặt phẳng trung trực của \(AB\)là \(\left( Q \right):y + z = 0\);

Suy ra\(M\)thuộc giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Ta tìm được đó là đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 - 3t\\y = t\\z =  - t\end{array} \right.\).

Tham số hóa \(M\left( {1 - 3t;t; - t} \right)\) thì \(\overrightarrow {AM} \left( { - 1 - 3t;t - 2; - t} \right);\overrightarrow {BM} \left( { - 1 - 3t;t; - t + 2} \right)\)

Suy ra \(\cos AMB = \frac{{\overrightarrow {MA} .\overrightarrow {MB} }}{{MA.MB}} = \frac{{{{\left( {1 + 3t} \right)}^2} + t\left( {t - 2} \right).2}}{{{{\left( {1 + 3t} \right)}^2} + {{\left( {t - 2} \right)}^2} + {t^2}}} = \frac{{11{t^2} + 2t + 1}}{{11{t^2} + 2t + 5}} = f\left( t \right)\)

Để góc \(AMB\) lớn nhất thì ta cần \[\cos AMB = f\left( t \right)\] nhỏ nhất.

Khảo sát hàm \(f\left( t \right)\)ta được \(f\left( t \right)\)nhỏ nhất khi và chỉ khi \(t =  - \frac{1}{{11}}\).

Suy ra \(M\left( {\frac{{14}}{{11}}; - \frac{1}{{11}};\frac{1}{{11}}} \right)\). Vậy \(S = 15\).

Câu 7

A. \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{{18}} + \frac{{k2\pi }}{3}}\\{x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}}\end{array}} \right.\).              
B. \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + \frac{{k2\pi }}{3}}\\{x = \frac{\pi }{{12}} + \frac{{k2\pi }}{3}}\end{array}} \right.\).              
C. \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{{18}} + k2\pi }\\{x = - \frac{\pi }{{18}} + k2\pi }\end{array}} \right.\).                         
D. \[\left[ \begin{array}{l}x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\\x = \frac{{5\pi }}{6} + \frac{{k2\pi }}{3}\end{array} \right.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP