Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật. Gọi \(M,N\) theo thứ tự là trọng tâm \(\Delta SAB;\,\,\Delta SCD\). Khi đó \(MN\) song song với mặt phẳng
Quảng cáo
Trả lời:
Chọn D
![Chọn D Ta có \[MN\,{\rm{// }}IJ\], suy ra \(MN{\rm{//}}\left( {ABCD} \right)\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/1-1766970167.png)
Ta có \[MN\,{\rm{// }}IJ\], suy ra \(MN{\rm{//}}\left( {ABCD} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \[499\].
\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ {2f\left( x \right) - {f^2}\left( x \right)} \right] = - \infty \] nên không tồn tại \[\mathop {\lim }\limits_{x \to + \infty } g\left( x \right)\].\[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1 \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {2f\left( x \right) - {f^2}\left( x \right)} + m} \right] = 1 + m\].\[\mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {{x^2} + 1000x} + x} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {\frac{{1000x}}{{\sqrt {{x^2} + 1000x} - x}}} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {\frac{{1000}}{{ - \sqrt {1 + 1000/x} - 1}}} \right] = - 500.\]
\[\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \frac{{ - 500}}{{1 + m}}\left( {m \ne - 1} \right)\] suy ra tiệm cận ngang của đồ thị hàm số \[g\left( x \right)\] là đường thẳng \[y = \frac{{ - 500}}{{1 + m}}\]
Để đồ thị hàm số \[g\left( x \right)\] có tiệm cận ngang nằm dưới đường thẳng \[y = - 1\] khi và chỉ khi \[\frac{{ - 500}}{{1 + m}} < - 1 \Leftrightarrow \frac{{m - 499}}{{m + 1}} < 0 \Leftrightarrow - 1 < m < 499\] mà \[m\] nguyên thuộc \[\left[ { - 2020;2020} \right]\] nên \[m \in \left\{ {0;1;2;...;498} \right\}\].
Vậy có \[498 - 0 + 1 = 499\] giá trị nguyên của \[m\].
Lời giải
Trả lời: 8

Đặt \[HE = {x_{}}{,_{}}FK = y\], với \[x,\,y > 0\]
Ta có: \[HE + KF = 20 \Rightarrow x + y = 20\], \[\left\{ \begin{array}{l}AE = \sqrt {16 + {x^2}} \\BF = \sqrt {36 + {y^2}} = \sqrt {36 + {{\left( {20 - x} \right)}^2}} \end{array} \right.\]
Nhận xét: Vì \[EF\] không đổi nên \[AB\] ngắn nhất khi \[AE + BF\] nhỏ nhất.
Ta có \[AE + BF\]\[ = \sqrt {{x^2} + 16} + \sqrt {{{\left( {20 - x} \right)}^2} + 36} = \sqrt {{x^2} + 16} + \sqrt {{x^2} - 40x + 436} = f\left( x \right)\]
Đạo hàm \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + 16} }} + \frac{{x - 20}}{{\sqrt {{x^2} - 40x + 436} }} = 0 \Rightarrow x = 8,\,\forall x \in \left( {0;20} \right)\]\[\]
Bảng biến thiên

Vậy \(HE = 8\)km
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
