PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S).
Cho hình chóp \[S.ABC\] có mặt bên \[\left( {SAB} \right)\] vuông góc với mặt đáy và tam giác \[SAB\] đều cạnh \[2a\]. Lấy \[H\] là trung điểm của \[AB\]. Biết tam giác \[ABC\] vuông tại \[C\] và cạnh \[AC = a\sqrt 3 \] . Khi đó:
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S).
Cho hình chóp \[S.ABC\] có mặt bên \[\left( {SAB} \right)\] vuông góc với mặt đáy và tam giác \[SAB\] đều cạnh \[2a\]. Lấy \[H\] là trung điểm của \[AB\]. Biết tam giác \[ABC\] vuông tại \[C\] và cạnh \[AC = a\sqrt 3 \] . Khi đó:Quảng cáo
Trả lời:

a) [NB] Trong tam giác đều \[SAB\],\[SH\]là đường cao. Do đó \[SH \bot AB\]
Theo giả thiết mặt bên \[(SAB) \bot (ABC)\], \[(SAB) \cap (ABC) = AB\], \[SH \subset (SAB)\] nên \[SH \bot (ABC)\]
a) đúng.
b) [TH] Giả sử \[\left( {SHC} \right) \bot \left( {SAC} \right)\].
Kẻ \[HK \bot SC\] tại \[K\]. Vì \[(SHC) \cap (SAC) = SC\] và \[HK \subset (SHC)\] nên \[HK \bot (SAC)\], suy ra \[HK \bot AC\].
Hơn nữa vì \[SH \bot (ABC)\] nên \[SH \bot AC\]. Suy ra \[AC \bot (SHC)\], suy ra \[AC \bot HC\]: điều này vô lý vì tam giác \[ABC\] vuông tại \[C\].
Vậy \[\left( {SHC} \right)\]không vuông góc với \[\left( {SAC} \right)\]
b) sai
c) \[(SAB) \bot (ABC)\]nên\[d(C,(SAB)) = d(C,AB) = \frac{{AC.BC}}{{AB}} = \frac{{a\sqrt 3 .\sqrt {4{a^2} - 3{a^2}} }}{{2a}} = \frac{{a\sqrt 3 }}{2}.\]
c) sai
d) Thể tích của khối chóp \[S.ABC\]là
\[V = \frac{1}{3}.{S_{\Delta ABC}}.SH = \frac{1}{3}.\frac{1}{2}.CA.CB.\frac{{AB\sqrt 3 }}{2} = \frac{{{a^3}}}{2}\].
d) sai
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \[499\].
\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ {2f\left( x \right) - {f^2}\left( x \right)} \right] = - \infty \] nên không tồn tại \[\mathop {\lim }\limits_{x \to + \infty } g\left( x \right)\].\[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1 \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {2f\left( x \right) - {f^2}\left( x \right)} + m} \right] = 1 + m\].\[\mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {{x^2} + 1000x} + x} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {\frac{{1000x}}{{\sqrt {{x^2} + 1000x} - x}}} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {\frac{{1000}}{{ - \sqrt {1 + 1000/x} - 1}}} \right] = - 500.\]
\[\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \frac{{ - 500}}{{1 + m}}\left( {m \ne - 1} \right)\] suy ra tiệm cận ngang của đồ thị hàm số \[g\left( x \right)\] là đường thẳng \[y = \frac{{ - 500}}{{1 + m}}\]
Để đồ thị hàm số \[g\left( x \right)\] có tiệm cận ngang nằm dưới đường thẳng \[y = - 1\] khi và chỉ khi \[\frac{{ - 500}}{{1 + m}} < - 1 \Leftrightarrow \frac{{m - 499}}{{m + 1}} < 0 \Leftrightarrow - 1 < m < 499\] mà \[m\] nguyên thuộc \[\left[ { - 2020;2020} \right]\] nên \[m \in \left\{ {0;1;2;...;498} \right\}\].
Vậy có \[498 - 0 + 1 = 499\] giá trị nguyên của \[m\].
Lời giải
Trả lời: 8

Đặt \[HE = {x_{}}{,_{}}FK = y\], với \[x,\,y > 0\]
Ta có: \[HE + KF = 20 \Rightarrow x + y = 20\], \[\left\{ \begin{array}{l}AE = \sqrt {16 + {x^2}} \\BF = \sqrt {36 + {y^2}} = \sqrt {36 + {{\left( {20 - x} \right)}^2}} \end{array} \right.\]
Nhận xét: Vì \[EF\] không đổi nên \[AB\] ngắn nhất khi \[AE + BF\] nhỏ nhất.
Ta có \[AE + BF\]\[ = \sqrt {{x^2} + 16} + \sqrt {{{\left( {20 - x} \right)}^2} + 36} = \sqrt {{x^2} + 16} + \sqrt {{x^2} - 40x + 436} = f\left( x \right)\]
Đạo hàm \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + 16} }} + \frac{{x - 20}}{{\sqrt {{x^2} - 40x + 436} }} = 0 \Rightarrow x = 8,\,\forall x \in \left( {0;20} \right)\]\[\]
Bảng biến thiên

Vậy \(HE = 8\)km
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
