Trong cuộc gặp mặt dặn dò trước khi lên đường tham gia kì thi học sinh giỏi, có 10 bạn trong đội tuyển gồm 2 bạn đến từ lớp 12A, 3 bạn từ lớp 12B, 5 bạn còn lại đến từ 5 lớp khác (mỗi lớp một bạn). Thầy giáo xếp ngẫu nhiên các bạn kể trên ngồi vào một bàn dài có 10 ghế mà mỗi bên có 5 ghế xếp đối diện nhau. Xác suất để có học sinh cùng lớp ngồi đối diện nhau bằng \(\frac{a}{b}\)( với \(\frac{a}{b}\)là phân số tối giản).Tính \(a + b\)?
Trong cuộc gặp mặt dặn dò trước khi lên đường tham gia kì thi học sinh giỏi, có 10 bạn trong đội tuyển gồm 2 bạn đến từ lớp 12A, 3 bạn từ lớp 12B, 5 bạn còn lại đến từ 5 lớp khác (mỗi lớp một bạn). Thầy giáo xếp ngẫu nhiên các bạn kể trên ngồi vào một bàn dài có 10 ghế mà mỗi bên có 5 ghế xếp đối diện nhau. Xác suất để có học sinh cùng lớp ngồi đối diện nhau bằng \(\frac{a}{b}\)( với \(\frac{a}{b}\)là phân số tối giản).Tính \(a + b\)?
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 88.
Số cách xếp 10 bạn học sinh trong đội tuyển thi HSG vào một bàn dài mà mỗi bên có 5 ghế đối diện nhau là \(10! \Rightarrow n(\Omega ) = 10!\) !
Xét các biến cố:
\(A\) : "Có học sinh cùng lớp ngồi đối diện nhau".
\({A_1}\) :" Học sinh lớp 12A ngồi đối diện nhau".
\({A_2}\) : "Học sinh lớp 12B ngồi đối diện nhau".
\({A_1} \cap {A_2}\) : "Học sinh 12A ngồi đối diện nhau và học sinh 12B ngồi đối diện nhau".
\( \Rightarrow A = {A_1} \cup {A_2} \Rightarrow n\left( A \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right)\).
Sắp xếp 2 hs lớp 12A ngồi vào hai ghế đối diện nhau, hoán đổi vị trí của 2 hs, sau đó sắp xếp 8 hs còn lại \( \Rightarrow n\left( {{A_1}} \right) = C_5^1.2!.8!\).
Từ 3 hs lớp 12B, chọn ra 2 hs sắp xếp 2 hs này ngồi vào hai ghế đối diện, sau đó sắp xếp 8 hs còn lại
\( \Rightarrow n\left( {{A_2}} \right) = A_3^2.C_5^1.8!\).
Sự kiện cả 12A và 12B đều có một cặp ngồi đối diện (các cặp ghế phải khác nhau):
Chọn cặp ghế cho 12A: cách.
Chọn cặp ghế khác cho 12B: còn cách.
Chọn 2 trong 3 học sinh 12B để tạo cặp đối diện: \(C_3^2 = 3\)
Sắp xếp trong mỗi cặp: cho 12A và cho 12B.
Các 6 học sinh còn lại sắp xếp vào 6 ghế còn lại: .
Vậy
\( \Rightarrow n\left( {{A_1} \cap {A_2}} \right) = \)
.
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{25}}{{63}} \Rightarrow a = 25;b = 63 \Rightarrow a + b = 88\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 34,5
Đồ thị hàm số có tiệm cận đứng \(x = - \frac{b}{2} = \frac{1}{2} \Rightarrow b = - 1\).
Khi đó đồ thị hàm số \(y = \frac{{x + a}}{{2x - 1}}\) qua \(\left( {2\,;\,\,3} \right) \Rightarrow 3 = \frac{{2 + a}}{{2.2 - 1}} \Rightarrow a = 7\); hàm số là (C).
Ta nhận thấy để khoảng cách từ điểm M thuộc khu vườn đến hai đường thẳng là nhỏ nhất thì điểm M phải thuộc đồ thị hàm số.
Gọi \(M\left( {{x_0}\,;\,\,\frac{{{x_0} + 7}}{{2{x_0} - 1}}} \right) \in \left( C \right),\,\,{x_0} > \frac{1}{2}\). Tổng khoảng cách từ M đến hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) là
\(d = d\left( {M\,,\,\,{\Delta _1}} \right) + d\left( {M\,,\,\,{\Delta _2}} \right) = \frac{{\left| {2{x_0} + \frac{{{x_0} + 7}}{{2{x_0} - 1}} - 4} \right|}}{{\sqrt 5 }} + \frac{{\left| {{x_0} + 2 \cdot \frac{{{x_0} + 7}}{{2{x_0} - 1}} - 2} \right|}}{{\sqrt 5 }}\) ;
\(\sqrt 5 d = \left| {\frac{{4x_0^2 - 9{x_0} + 11}}{{2{x_0} - 1}}} \right| + \left| {\frac{{2x_0^2 - 3{x_0} + 16}}{{2{x_0} - 1}}} \right| = \frac{{4x_0^2 - 9{x_0} + 11}}{{2{x_0} - 1}} + \frac{{2x_0^2 - 3{x_0} + 16}}{{2{x_0} - 1}}\) (vì \(\left\{ \begin{array}{l}4x_0^2 - 9{x_0} + 11 > 0\\2{x_0} - 1 > 0\\2x_0^2 - 3{x_0} + 16 > 0\end{array} \right.\,,\,\,\forall {x_0} > \frac{1}{2}\)).
Đặt \(\sqrt 5 d = \frac{{6x_0^2 - 12{x_0} + 27}}{{2{x_0} - 1}} = g\left( x \right)\) với \({x_0} > \frac{1}{2}\).
Ta có: \(g'\left( x \right) = \frac{{12x_0^2 - 12{x_0} - 42}}{{{{\left( {2{x_0} - 1} \right)}^2}}}\); \(g'\left( x \right) = 0 \Rightarrow 12x_0^2 - 12{x_0} - 42 = 0 \Rightarrow {x_0} = \frac{{1 + \sqrt {15} }}{2} > \frac{1}{2}\).
Ta có: .
Dấu đẳng thức xảy ra khi \({x_0} = \frac{{1 + \sqrt {15} }}{2}\)\( \Rightarrow M\left( {\frac{{1 + \sqrt {15} }}{2}\,;\,\,\frac{{1 + \sqrt {15} }}{2}} \right)\).
Khoảng cách OM trên thực tế là mét.
Câu 2
Lời giải
a)Đúng; b) Đúng; c) Sai; d) Sai.
Gọi đường tiệm cận xiên của đồ thị hàm số \[f(x)\] là \[y = {\rm{ax + b}}\]
Theo giả thiết ta có: \[\left\{ \begin{array}{l} - \frac{1}{2}a + b = 1\\3{\rm{a}} + b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{2}{7}\\b = \frac{8}{7}\end{array} \right.\]
Suy ra cận xiên của hàm số có dạng \[y = \frac{2}{7}\left( {x + 4} \right)\]
Hàm số \[f\left( x \right) = \frac{{a{x^2} + bx + c}}{{2x + e}}\]được viết lại dưới dạng \[f\left( x \right) = \frac{2}{7}\left( {x + 4} \right) + \frac{d}{{2x + 1}}\]
Lợi nhận = Doanh thu – Chi phí \[P\left( x \right) = R\left( x \right) - f\left( x \right) = {x^2} + 2{\rm{x - }}\frac{2}{7}\left( {x + 4} \right) - \frac{d}{{2x + 1}}\]
Theo giả thiết lợi nhận thu về khi bán 200 sản phẩm bằng 5250USD.
Khi đó \[P\left( 2 \right) = 5,25 \Leftrightarrow \frac{{44}}{7} - \frac{d}{5} = 5,25 \Leftrightarrow \]\[d = \frac{{145}}{{28}}\]
Vậy \[f\left( x \right) = \frac{2}{7}\left( {x + 4} \right) + \frac{{145}}{{28}}.\frac{1}{{2x + 1}}\] có đạo hàm \[f'\left( x \right) = \frac{2}{7} - \frac{{290}}{{28{{\left( {2x + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt {145} - 2}}{4}(nhan)\\x = \frac{{ - \sqrt {145} - 2}}{4}(loai)\end{array} \right.\]
Bảng biến thiên
|
\(x\) |
\(0\) |
\(\frac{{\sqrt {145} - 2}}{4}\) |
|
|
\( + \infty \) |
|
\(f'\left( x \right)\) |
|
- 0 + |
|
|
|
|
\(f\left( x \right)\)
|
|
|
|
|
\( + \infty \)
|
Vậy số sản phẩm khi chi phí đạt giá trị nhỏ nhất là \(\frac{{\sqrt {145} - 2}}{4}.100 \approx 251\) sản phẩm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Thống kê nhiệt độ tại một địa điểm trong 40 ngày, ta có bảng số liệu sau:
|
Nhiệt độ \(\left( {^\circ C} \right)\) |
\(\left[ {19;22} \right)\) |
\(\left[ {22;25} \right)\) |
\(\left[ {25;28} \right)\) |
\(\left[ {28;31} \right)\) |
|
Số ngày |
7 |
15 |
12 |
6 |
Nhiệt độ trung bình là?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

