Câu hỏi:

31/12/2025 0 Lưu

Một xe buýt bắt đầu rời bến chuyển động nhanh dần đều với gia tốc 1m/s2 thì phía sau cách xe một khoảng 48m, một người đi xe máy với vận tốc không đổi 10m/s cúng bắt đầu xuất phát đuổi theo cùng hướng chuyển động của xe buýt. Thời gian nhỏ nhất để người đi xe máy có thể bắt kịp xe buýt là:

A. 4,8s.                   
B. 8s.   
C. 12s.            
D. 16s.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Sử dụng lí thuyết về chuyển động biến đổi.

Phương trình chuyển động: \(x = {x_0} + {v_0}t + \frac{1}{2}a{t^2}\)

Lời giải

Chọn trục tọa độ Ox có chiều trùng với chiều chuyển động của người đi xe máy và xe buýt, chiều dương hướng từ người đi xe máy đến xe buýt. Gốc O tại vị trí xuất phát của người đi xe máy. Gốc thời gian là lúc người và xe buýt bắt đầu chuyển động.

Tại thời điểm t:

Vị trí của xe buýt: \({x_1} = 48 + 1.\frac{{{t^2}}}{2} = 48 + \frac{{{t^2}}}{2}\)

Vị trí của người đi xe máy: \({x_2} = vt = 10t\)

Khi người đi xe máy bắt kịp xe buýt thì \({x_1} = {x_2} \Leftrightarrow 48 + \frac{{{t^2}}}{2} = 10t \Leftrightarrow {t^2} - 20t + 96 = 0\)

\( \Rightarrow {t_1} = 8s;{t_2} = 12s\)

Như vật thời gian nhỏ nhất để người đi xe máy bắt kịp xe buýt là 8s, sau đó người đi xe máy sẽ vượt lên xe buýt. Tại \({t_2} = 12s\) xe buýt sẽ lại đuổi kịp xe máy. Sau thời điểm này, xe buýt luôn ở trước xe máy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Tính thể tích

Lời giải

Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều, A'A = A'B = A'C = a căn 7 (ảnh 1)

Ta có \(A'A = A'B = A'C = a\sqrt 7 \) nên \(A'\) cách đều ba điểm \(A,B,C\). Gọi \(M\) là trung điểm của \(BC\)\(G\) là trọng tâm tam giác đều \(ABC\) suy ra \(A'G \bot \left( {ABC} \right)\)

Gọi \(H\) là hình chiếu của \(B'\) lên \(\left( {ABC} \right),B'C \cap \left( {ABC} \right) = C \Rightarrow HC\) là hình chiếu của \(B'C\) lên \(\left( {ABC} \right)\).

Suy ra \(\left( {B'C\widehat {\left( {ABC} \right)}} \right) = \left( {\widehat {B'C;HC}} \right) = {30^ \circ }\), và

\(B'H = d\left( {B';\left( {ABC} \right)} \right) = d\left( {A';\left( {ABC} \right)} \right) = A'G\) (vì \(A'B'//\left( {ABC} \right)\))

Xét tam giác \(B'HC\) vuông tại \(H\) ta có:

\({\rm{sin}}{30^ \circ } = \frac{{d\left( {B';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{d\left( {A';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{A'G}}{{B'C}}\).

Suy ra \(B'C = 2A'G\), đặt \(x = A'G,x > 0 \Rightarrow B'C = 2x\).

Mà ta thấy \(BC \bot \left( {A'AM} \right) \Rightarrow BC \bot A'A \Rightarrow BC \bot B'B \Rightarrow B'BC'C\) là hình chữ nhật.

Xét tam giác \(A'AG\) vuông tại \(G\), suy ra

\(AG = \sqrt {A'{A^2} - A'{G^2}} = \sqrt {7{a^2} - {x^2}} \Rightarrow AM = \frac{3}{2}AG = \frac{3}{2}\sqrt {7{a^2} - {x^2}} \)

\( \Rightarrow AB = BC = AC = \sqrt {3\left( {7{a^2} - {x^2}} \right)} \).

Xét tam giác \(B'BC\) vuông tại \(B\)

\( \Leftrightarrow B'{B^2} + B{C^2} = B'{C^2} \Leftrightarrow 7{a^2} + 3\left( {7{a^2} - {x^2}} \right) = 4{x^2} \Leftrightarrow x = 2a\).

Suy ra \(A'G = 2a \Rightarrow AB = BC = AC = 3a \Rightarrow {S_{ABC}} = \frac{{9\sqrt 3 }}{4}{a^2}\).

Vậy \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}} = 2a.\frac{{9\sqrt 3 }}{4}{a^2} = \frac{{9\sqrt 3 }}{2}{a^3}\).

Câu 2

A. \(\frac{\pi }{{12}}\).   
B. \(\frac{\pi }{6}\). 
C. \(\frac{\pi }{3}\).    
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là B

Phương pháp giải

Tính chu kỳ của hàm số lượng giác.

Lời giải

Ta có \({\rm{cos}}\left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\) có chu kỳ là \(\frac{{2\pi }}{{\frac{\pi }{{12}}}} = 24\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. This chance did not happen    
B. By happening this chance
C. This happen did not by chance               

D. This did not happen by chance

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP