Câu hỏi:

31/12/2025 0 Lưu

Một ống khí có một đầu bịt kín, một đầu hở tạo ra âm cơ bản có tần số 112Hz. Biết tốc độ truyền âm trong không khí là 336m/s. Bước sóng dài nhất của các họa âm mà ống này tạo ra bằng:

A. 1m.                
B. 0,8m.    
C. 0,2m.     
D. 2m.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Điều kiện để có sóng dừng trong ống: \(l = (2k + 1).\frac{\lambda }{4} \Rightarrow \lambda = \frac{{4l}}{{2k + 1}}\) ()    

Lời giải

Điều kiện để có sóng dừng trong ống: \(l = (2k + 1).\frac{\lambda }{4} \Rightarrow \lambda = \frac{{4l}}{{2k + 1}}\) ()

(l là chiều dài của cột khí trong ống, đầu kín là nút đầu hở là bụng của sóng dừng trong ống khí). Từ đó ta có \(f = \frac{v}{f} = (2k + 1).\frac{v}{{4l}} = (2k + 1).{f_0}\left( {{f_0} = \frac{v}{{4l}}} \right)\)

(f0: tần số âm cơ bản). Theo bài ra ta có:

\({f_0} = 112Hz \Rightarrow \frac{v}{{4l}} = 112 \Rightarrow l = \frac{v}{{4.112}} = 0,75\,\,({\rm{m}})\)

Từ (*) ta thấy các họa âm có \({\lambda _{\max }}\) khi \({(2k + 1)_{\min }}\), suy ra \((2k + 1) = 3\) (với \(k = 1\)).

Vậy \({\lambda _{\max }} = \frac{{4l}}{3} = 1\,\,(m)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Tính thể tích

Lời giải

Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều, A'A = A'B = A'C = a căn 7 (ảnh 1)

Ta có \(A'A = A'B = A'C = a\sqrt 7 \) nên \(A'\) cách đều ba điểm \(A,B,C\). Gọi \(M\) là trung điểm của \(BC\)\(G\) là trọng tâm tam giác đều \(ABC\) suy ra \(A'G \bot \left( {ABC} \right)\)

Gọi \(H\) là hình chiếu của \(B'\) lên \(\left( {ABC} \right),B'C \cap \left( {ABC} \right) = C \Rightarrow HC\) là hình chiếu của \(B'C\) lên \(\left( {ABC} \right)\).

Suy ra \(\left( {B'C\widehat {\left( {ABC} \right)}} \right) = \left( {\widehat {B'C;HC}} \right) = {30^ \circ }\), và

\(B'H = d\left( {B';\left( {ABC} \right)} \right) = d\left( {A';\left( {ABC} \right)} \right) = A'G\) (vì \(A'B'//\left( {ABC} \right)\))

Xét tam giác \(B'HC\) vuông tại \(H\) ta có:

\({\rm{sin}}{30^ \circ } = \frac{{d\left( {B';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{d\left( {A';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{A'G}}{{B'C}}\).

Suy ra \(B'C = 2A'G\), đặt \(x = A'G,x > 0 \Rightarrow B'C = 2x\).

Mà ta thấy \(BC \bot \left( {A'AM} \right) \Rightarrow BC \bot A'A \Rightarrow BC \bot B'B \Rightarrow B'BC'C\) là hình chữ nhật.

Xét tam giác \(A'AG\) vuông tại \(G\), suy ra

\(AG = \sqrt {A'{A^2} - A'{G^2}} = \sqrt {7{a^2} - {x^2}} \Rightarrow AM = \frac{3}{2}AG = \frac{3}{2}\sqrt {7{a^2} - {x^2}} \)

\( \Rightarrow AB = BC = AC = \sqrt {3\left( {7{a^2} - {x^2}} \right)} \).

Xét tam giác \(B'BC\) vuông tại \(B\)

\( \Leftrightarrow B'{B^2} + B{C^2} = B'{C^2} \Leftrightarrow 7{a^2} + 3\left( {7{a^2} - {x^2}} \right) = 4{x^2} \Leftrightarrow x = 2a\).

Suy ra \(A'G = 2a \Rightarrow AB = BC = AC = 3a \Rightarrow {S_{ABC}} = \frac{{9\sqrt 3 }}{4}{a^2}\).

Vậy \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}} = 2a.\frac{{9\sqrt 3 }}{4}{a^2} = \frac{{9\sqrt 3 }}{2}{a^3}\).

Câu 2

A. \(\frac{\pi }{{12}}\).   
B. \(\frac{\pi }{6}\). 
C. \(\frac{\pi }{3}\).    
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là B

Phương pháp giải

Tính chu kỳ của hàm số lượng giác.

Lời giải

Ta có \({\rm{cos}}\left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\) có chu kỳ là \(\frac{{2\pi }}{{\frac{\pi }{{12}}}} = 24\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. This chance did not happen    
B. By happening this chance
C. This happen did not by chance               

D. This did not happen by chance

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP