Câu hỏi:

31/12/2025 1 Lưu

Sự giống nhau giữa DNA, RNA và protein là:

I. Đều là các đại phân tử, có kích thước và khối lượng lớn trong tế bào.

II. Đều cấu tạo theo nguyên tắc đa phân, gồm các đơn phân.

III. Đều cấu tạo từ nhiều hợp chất hữu cơ.

IV. Giữa các đơn phân đều có liên kết cộng hoá trị và liên kết hydro.

V. Tính đa dạng và đặc thù do thành phần, số lượng và trật tự của các đơn phân quy định.

A. I, II và III.       
B. I, II, IV và V. 
C. I, II và V.  
D. I, II, III, IV, và V.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là C

Phương pháp giải

So sánh cấu tạo phân tử DNA, RNA và Protein.

Lời giải

Phân tích các đáp án:

I. Đều là các đại phân tử, có kích thước và khối lượng lớn trong tế bào → Đúng

II. Đều cấu tạo theo nguyên tắc đa phân, gồm các đơn phân → Đúng

III. Đều cấu tạo từ nhiều hợp chất hữu cơ → Sai

IV. Giữa các đơn phân đều có liên kết cộng hoá trị và liên kết hydro → Sai

V. Tính đa dạng và đặc thù do thành phần, số lượng và trật tự của các đơn phân quy định → Đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Tính thể tích

Lời giải

Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều, A'A = A'B = A'C = a căn 7 (ảnh 1)

Ta có \(A'A = A'B = A'C = a\sqrt 7 \) nên \(A'\) cách đều ba điểm \(A,B,C\). Gọi \(M\) là trung điểm của \(BC\)\(G\) là trọng tâm tam giác đều \(ABC\) suy ra \(A'G \bot \left( {ABC} \right)\)

Gọi \(H\) là hình chiếu của \(B'\) lên \(\left( {ABC} \right),B'C \cap \left( {ABC} \right) = C \Rightarrow HC\) là hình chiếu của \(B'C\) lên \(\left( {ABC} \right)\).

Suy ra \(\left( {B'C\widehat {\left( {ABC} \right)}} \right) = \left( {\widehat {B'C;HC}} \right) = {30^ \circ }\), và

\(B'H = d\left( {B';\left( {ABC} \right)} \right) = d\left( {A';\left( {ABC} \right)} \right) = A'G\) (vì \(A'B'//\left( {ABC} \right)\))

Xét tam giác \(B'HC\) vuông tại \(H\) ta có:

\({\rm{sin}}{30^ \circ } = \frac{{d\left( {B';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{d\left( {A';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{A'G}}{{B'C}}\).

Suy ra \(B'C = 2A'G\), đặt \(x = A'G,x > 0 \Rightarrow B'C = 2x\).

Mà ta thấy \(BC \bot \left( {A'AM} \right) \Rightarrow BC \bot A'A \Rightarrow BC \bot B'B \Rightarrow B'BC'C\) là hình chữ nhật.

Xét tam giác \(A'AG\) vuông tại \(G\), suy ra

\(AG = \sqrt {A'{A^2} - A'{G^2}} = \sqrt {7{a^2} - {x^2}} \Rightarrow AM = \frac{3}{2}AG = \frac{3}{2}\sqrt {7{a^2} - {x^2}} \)

\( \Rightarrow AB = BC = AC = \sqrt {3\left( {7{a^2} - {x^2}} \right)} \).

Xét tam giác \(B'BC\) vuông tại \(B\)

\( \Leftrightarrow B'{B^2} + B{C^2} = B'{C^2} \Leftrightarrow 7{a^2} + 3\left( {7{a^2} - {x^2}} \right) = 4{x^2} \Leftrightarrow x = 2a\).

Suy ra \(A'G = 2a \Rightarrow AB = BC = AC = 3a \Rightarrow {S_{ABC}} = \frac{{9\sqrt 3 }}{4}{a^2}\).

Vậy \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}} = 2a.\frac{{9\sqrt 3 }}{4}{a^2} = \frac{{9\sqrt 3 }}{2}{a^3}\).

Câu 2

A. \(\frac{\pi }{{12}}\).   
B. \(\frac{\pi }{6}\). 
C. \(\frac{\pi }{3}\).    
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là B

Phương pháp giải

Tính chu kỳ của hàm số lượng giác.

Lời giải

Ta có \({\rm{cos}}\left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\) có chu kỳ là \(\frac{{2\pi }}{{\frac{\pi }{{12}}}} = 24\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. This chance did not happen    
B. By happening this chance
C. This happen did not by chance               

D. This did not happen by chance

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Sự không đồng nhất của lực hấp dẫn từ Mặt trăng.
B. Sự không đồng nhất của lực hấp dẫn từ Trái đất.
C. Sự không đồng nhất của lực hấp dẫn giữa Trái đất và Mặt trăng.
D. Sự không đồng nhất của lực hấp dẫn giữa Mặt trăng và các thiên thể khác trừ Trái đất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP