Câu hỏi:

31/12/2025 1 Lưu

Trong những hoạt động sau đây của con người, những hoạt động góp phần vào việc sử dụng bền vững tài nguyên thiên nhiên là:

I. Sử dụng tiết kiệm nguồn nước.

II. Tăng cường khai thác các nguồn tài nguyên tái sinh và không tái sinh.

III. Xây dựng hệ thống các khu bảo tồn thiên nhiên.

IV. Vận động đồng bào dân tộc sống định canh, định cư, tránh đốt rừng, làm nương rẫy.

A. I, II, III    
B. I, III, IV   
C. I, II, IV   
D. II, III, IV

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Đọc lý thuyết về quản lý và sử dụng bền vững tài nguyên thiên nhiên.

Lời giải

Nhận định số (II) – tăng cường khai thác các nguồn tài nguyên không tái sinh không phải là biện pháp sử dụng bền vững tài nguyên thiên nhiên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Tính thể tích

Lời giải

Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều, A'A = A'B = A'C = a căn 7 (ảnh 1)

Ta có \(A'A = A'B = A'C = a\sqrt 7 \) nên \(A'\) cách đều ba điểm \(A,B,C\). Gọi \(M\) là trung điểm của \(BC\)\(G\) là trọng tâm tam giác đều \(ABC\) suy ra \(A'G \bot \left( {ABC} \right)\)

Gọi \(H\) là hình chiếu của \(B'\) lên \(\left( {ABC} \right),B'C \cap \left( {ABC} \right) = C \Rightarrow HC\) là hình chiếu của \(B'C\) lên \(\left( {ABC} \right)\).

Suy ra \(\left( {B'C\widehat {\left( {ABC} \right)}} \right) = \left( {\widehat {B'C;HC}} \right) = {30^ \circ }\), và

\(B'H = d\left( {B';\left( {ABC} \right)} \right) = d\left( {A';\left( {ABC} \right)} \right) = A'G\) (vì \(A'B'//\left( {ABC} \right)\))

Xét tam giác \(B'HC\) vuông tại \(H\) ta có:

\({\rm{sin}}{30^ \circ } = \frac{{d\left( {B';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{d\left( {A';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{A'G}}{{B'C}}\).

Suy ra \(B'C = 2A'G\), đặt \(x = A'G,x > 0 \Rightarrow B'C = 2x\).

Mà ta thấy \(BC \bot \left( {A'AM} \right) \Rightarrow BC \bot A'A \Rightarrow BC \bot B'B \Rightarrow B'BC'C\) là hình chữ nhật.

Xét tam giác \(A'AG\) vuông tại \(G\), suy ra

\(AG = \sqrt {A'{A^2} - A'{G^2}} = \sqrt {7{a^2} - {x^2}} \Rightarrow AM = \frac{3}{2}AG = \frac{3}{2}\sqrt {7{a^2} - {x^2}} \)

\( \Rightarrow AB = BC = AC = \sqrt {3\left( {7{a^2} - {x^2}} \right)} \).

Xét tam giác \(B'BC\) vuông tại \(B\)

\( \Leftrightarrow B'{B^2} + B{C^2} = B'{C^2} \Leftrightarrow 7{a^2} + 3\left( {7{a^2} - {x^2}} \right) = 4{x^2} \Leftrightarrow x = 2a\).

Suy ra \(A'G = 2a \Rightarrow AB = BC = AC = 3a \Rightarrow {S_{ABC}} = \frac{{9\sqrt 3 }}{4}{a^2}\).

Vậy \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}} = 2a.\frac{{9\sqrt 3 }}{4}{a^2} = \frac{{9\sqrt 3 }}{2}{a^3}\).

Câu 2

A. \(\frac{\pi }{{12}}\).   
B. \(\frac{\pi }{6}\). 
C. \(\frac{\pi }{3}\).    
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là B

Phương pháp giải

Tính chu kỳ của hàm số lượng giác.

Lời giải

Ta có \({\rm{cos}}\left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\) có chu kỳ là \(\frac{{2\pi }}{{\frac{\pi }{{12}}}} = 24\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. This chance did not happen    
B. By happening this chance
C. This happen did not by chance               

D. This did not happen by chance

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP