Choose A, B, C or D that has the OPPOSITE meaning to the underlined word/ phrase in each question.
The sudden rise of the competitor seemed to seize the market share of established companies, causing concern among their executives."
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
seize (v): chiếm lấy, nắm lấy
Lời giải
A. determine others' behaviors: xác định hành vi của người khác
B. criticize someone strongly: chỉ trích mạnh mẽ
C. decide something officially: quyết định chính thức
D. relinquish one's power: từ bỏ quyền lực
→ Seize (v): chiếm lấy, nắm lấy >< relinquish (v) từ bỏ quyền lực.
Tạm dịch: Sự gia tăng đột ngột của đối thủ dường như đã chiếm lấy phần thị trường của các công ty đã được thành lập, gây lo ngại cho các giám đốc điều hành của họ.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Giải bất phương trình logarit.
Lời giải
\({\rm{lo}}{{\rm{g}}_3}\left( {x + {y^2} + 3y} \right) + 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2}} \right) \le {\rm{lo}}{{\rm{g}}_3}y + 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2} + 6y} \right)\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {x + {y^2} + 3y} \right) - {\rm{lo}}{{\rm{g}}_3}y \le 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2} + 6y} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2}} \right)\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {\frac{{x + {y^2}}}{y} + 3} \right) \le 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{{6y}}{{x + {y^2}}}} \right) \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {\frac{{x + {y^2}}}{y} + 3} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{{6y}}{{x + {y^2}}}} \right) \le 0\)
Ta đặt \(t = \frac{{x + {y^2}}}{y},t > 0\)
Khi đó bất phương trình trờ thành \({\rm{lo}}{{\rm{g}}_3}\left( {3 + t} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{6}{t}} \right) \le 0\) (1)
Xét hàm số \(f\left( t \right) = {\rm{lo}}{{\rm{g}}_3}\left( {3 + t} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{6}{t}} \right)\).
Suy ra \(f'\left( t \right) = \frac{1}{{\left( {3 + t} \right){\rm{ln}}3}} + \frac{{12}}{{\left( {{t^2} + 6t} \right){\rm{ln}}2}} > 0,\forall t > 0\). Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
Ta có: \(f\left( 6 \right) = {\rm{lo}}{{\rm{g}}_3}9 - 2{\rm{lo}}{{\rm{g}}_2}2 = 0\). Suy ra
\(f\left( t \right) \le f\left( 6 \right) \Leftrightarrow t \le 6 \Leftrightarrow \frac{{x + {y^2}}}{y} \le 6 \Leftrightarrow x + {(y - 3)^2} \le 9\)
Ta đếm các cặp giá trị nguyên dương của \(\left( {x;y} \right)\)
Ta có \({(y - 3)^2} < 9 \Leftrightarrow 0 < y < 6 \Rightarrow y \in \left\{ {1;2;3;4;5} \right\}\)
Với \(y = 1;y = 5 \Rightarrow x \le 5 \Rightarrow x \in \left\{ {1;2;3;4;5} \right\}\) suy ra có 10 cặp thỏa mãn.
Với \(y = 2;y = 4 \Rightarrow x \le 8 \Rightarrow x \in \left\{ {1;2;3;4;5;6;7;8} \right\}\) suy ra có 16 cặp thỏa mãn.
Với \(y = 3 \Rightarrow x \le 9 \Rightarrow x \in \left\{ {1;2;3;4;5;6;7;8;9} \right\}\) suy ra có 9 cặp thỏa mãn.
Vậy có tất cả 35 cặp giá trị nguyên dương thỏa mãn.
Câu 2
Lời giải
Đáp án đúng là D
Phương pháp giải
Đọc lý thuyết đọc lý thuyết về ứng dụng di truyền - kĩ thuật chuyển gene.
Lời giải
Trình tự các bước tạo DNA tái tổ hợp là: Tách DNA → cắt và nối tạo DNA tái tổ hợp → đưa DNA tái tổ hợp vào tế bào nhận.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. This did not happen by chance
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.