Một hộp chứa 30 chiếc thẻ được đánh số từ 1 đến 30. Người ta lấy ngẫu nhiên một thẻ từ hộp đó. Tính xác suất để thẻ lấy được mang số lẻ và không chia hết cho 3.
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Kết nối tri thức Chương 9 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Số phần tử không gian mẫu \(n\left( \Omega \right) = 30\).
Gọi \(A\) là biến cố “Thẻ lấy được là số lẻ và không chia hết cho 3”.
Khi đó \(A = \left\{ {1;5;7;11;13;17;19;23;25;29} \right\} \Rightarrow n\left( A \right) = 10\).
Xác suất để thẻ lấy được mang số lẻ và không chia hết cho 3 là \(P\left( A \right) = \frac{{10}}{{30}} = \frac{1}{3}\). Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Không gian mẫu của phép thử là \(\Omega = \left\{ {SSS;NNN;SNS;SSN;NSN;NNS} \right\}\).
b) Biến cố mặt ngửa xuất hiện đúng một lần là \(A = \left\{ {NSS;SNS;SSN} \right\}\).
c) Biến cố mặt sấp xuất hiện ít nhất một lần là \(B = \left\{ {SNN;NSN;SNS;NNN} \right\}\).
Lời giải
Lời giải
a) \(\Omega = \left\{ {SSS;NNN;SNS;SSN;NSN;NNS;NSS;SNN} \right\}\).
b) \(A = \left\{ {NSS;SNS;SSN} \right\}\).
c) \(B = \left\{ {SNN;NSN;NNS;SSN;SNS;NSS;SSS} \right\}\).
d) \(P\left( B \right) = \frac{7}{8}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Lời giải
Số phần tử của không gian mẫu là \({17^3}\).
Các số tự nhiên từ 1 đến 17 chia thành 3 nhóm:
Nhóm I gồm các số tự nhiên chia hết cho 3 gồm 5 số.
Nhóm II gồm các số tự nhiên chia cho 3 dư 1 gồm 6 số.
Nhóm III gồm các số tự nhiên chia cho 3 dư 2 gồm 6 số.
Để ba số có tổng chia hết cho 3 thì xảy ra các trường hợp sau:
Cả ba bạn viết được số thuộc nhóm I có \({5^3}\) cách.
Cả ba bạn viết được số thuộc nhóm II có \({6^3}\) cách.
Cả ba bạn viết được một số thuộc nhóm III có \({6^3}\) cách.
Mỗi bạn viết được một số thuộc một nhóm có \(3! \cdot \left( {5 \cdot 6 \cdot 6} \right)\).
Vậy có tất cả \({5^3} + {6^3} + {6^3} + 3! \cdot \left( {5 \cdot 6 \cdot 6} \right) = 1637\) kết quả thuận lợi cho biến cố.
Vậy xác suất cần tìm là \(P = \frac{{1637}}{{{{17}^3}}} = \frac{{1637}}{{4913}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(n\left( \Omega \right) = 8\).
b) Gọi \(A\) là biến cố “Gieo được mặt sấp”. Khi đó \(n\left( {\overline A } \right) = 1\).
c) Gọi \(A\) là biến cố “Gieo được mặt sấp”. Khi đó \(P\left( A \right) = \frac{1}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.