Giải phương trình ta được họ nghiệm . Tính P = 2a+3b (nhập đáp án vào ô trống)
Đáp án: ___
Quảng cáo
Trả lời:
Đáp án đúng là "11"
Phương pháp giải
Giải phương trình lượng giác.
Lời giải
ĐКХĐ: \(\left\{ {\begin{array}{*{20}{l}}{{\rm{sin}}x \ne 0}\\{{\rm{cos}}x \ne 0}\end{array}} \right.\).
\(\frac{{2{\rm{sin}}x}}{{{\rm{cot}}x}} - \frac{{{\rm{tan}}x}}{{{\rm{sin}}x}} = 2\left( {{\rm{sin}}x - {\rm{cos}}x} \right) \Leftrightarrow 2{\rm{si}}{{\rm{n}}^2}x - {\rm{tan}}x{\rm{cot}}x\) \( = 2\left( {{\rm{sin}}x - {\rm{cos}}x} \right){\rm{sin}}x{\rm{cot}}x\)
\( \Leftrightarrow 2{\sin ^2}x - 1 = 2\left( {\sin x - \cos x} \right)\cos x \Leftrightarrow 2{\sin ^2}x - 1 = 2\sin x.{\rm{cos}}x - 2{\rm{co}}{{\rm{s}}^2}x\)
\( \Leftrightarrow 2{\rm{si}}{{\rm{n}}^2}x + 2{\rm{co}}{{\rm{s}}^2}x - 1 = {\rm{sin}}2x \Leftrightarrow {\rm{sin}}2x = 1 \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{4} + k\pi \left( {k \in Z} \right)\)
Đối chiếu điều kiện, nghiệm phương trình là \(x = \frac{\pi }{4} + k\pi ,k \in Z\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 4}\\{b = 1}\end{array} \Rightarrow P = 2a + 3b = 2.4 + 3.1 = 11} \right.\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Xác định đường tiệm cận
Lời giải
Ta có: \({f^2}\left( x \right) - 6f\left( x \right) + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) = 3\,\,\,\left( 1 \right)}\\{f\left( x \right) = 1\,\,\,\left( 2 \right)}\end{array}} \right.\)
Dựa vào đồ thị hàm số, ta thấy:
(1) có nghiệm \({x_1} = a > 1\) (nghiệm đơn) và \({x_2} = - 1\) (nghiệm kép) \( \Rightarrow f\left( x \right) - 3 = k\left( {x - a} \right){(x + 1)^2}(k > 0)\)
(2) có nghiệm ba nghiệm đơn \({x_1},{x_2},{x_3}\) với \({x_1} = b < - 1 < {x_2} = 0 < 1 < {x_3} = c{\rm{\;}}(a > c)\)
\( \Rightarrow f\left( x \right) - 1 = k\left( {x - b} \right)x\left( {x - c} \right)(k > 0)\).
\( \Rightarrow \) Hàm số \(y = g\left( x \right)\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {a;b;0;1;c} \right\}\)
Vì \(g\left( x \right) = \frac{{\left( {x + 1} \right)\left( {{x^2} - 1} \right)}}{{{f^2}\left( x \right) - 4f\left( x \right) + 3}} = \frac{{\left( {x + 1} \right)\left( {{x^2} - 1} \right)}}{{\left[ {f\left( x \right) - 3} \right]\left[ {f\left( x \right) - 1} \right]}} = \frac{{x - 1}}{{{k^2}x\left( {x - b} \right)\left( {x - c} \right)\left( {x - a} \right)}}\)
Nên ĐTHS \(y = g\left( x \right)\) nhận đường thẳng \(y = 0\) làm TCN.
Tại các điểm \(x = a,x = b,x = 0,x = c\) mẫu của \(g\left( x \right)\) nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.
Và do hàm số xác định trên \(D = \mathbb{R}\backslash \left\{ {a;b;0;1;c} \right\}\) nên giới hạn một bên của hàm số \(y = g\left( x \right)\) tại các điểm \(x = a,x = b,x = 0,x = 1,x = c\) là các giới hạn vô cực.
Do đó, ĐTHS \(y = g\left( x \right)\) có 4 TCĐ: \(x = a,x = b,x = 0\) và \(x = c\).
Vậy ĐTHS \(y = g\left( x \right)\) có 5 đường tiệm cận: \(1{\rm{\;}}\) TCN: \(y = 0\) và 4 TCĐ \(x = a,x = b,x = 0,x = c\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


