Câu hỏi:

06/01/2026 2,371 Lưu

Hình vẽ biểu diễn số hạt α được phát ra từ một chất phóng xạ α theo thời gian t. Thang đo được sử dụng trong hình vẽ ứng với mỗi ô nằm ngang là 4s. Chu kì bán rã của chất phóng xạ là:

Hình vẽ biểu diễn số hạt α được phát ra từ một chất phóng xạ α theo thời gian t. Thang đo được sử dụng trong hình vẽ ứng với  (ảnh 1)

A. 8s.  
B. 4s.  
C. 1s.  
D. 2s.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)

Lời giải

Số hạt đã phân rã trong thời gian t:

\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 5

Đáp án đúng là "5"

Phương pháp giải

Tính chất của tích phân.

Lời giải

Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Ta có \(F\left( { - 1} \right) =  - 1 \Leftrightarrow  - 1 + {C_1} =  - 1 \Leftrightarrow {C_1} = 0\).

Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)

\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).

Lời giải

(1) 5

Đáp án đúng là "5"

Phương pháp giải

Xác định đường tiệm cận

Lời giải

Ta có: \({f^2}\left( x \right) - 6f\left( x \right) + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) = 3\,\,\,\left( 1 \right)}\\{f\left( x \right) = 1\,\,\,\left( 2 \right)}\end{array}} \right.\)

Dựa vào đồ thị hàm số, ta thấy:

(1) có nghiệm \({x_1} = a > 1\) (nghiệm đơn) và \({x_2} =  - 1\) (nghiệm kép) \( \Rightarrow f\left( x \right) - 3 = k\left( {x - a} \right){(x + 1)^2}(k > 0)\)

(2) có nghiệm ba nghiệm đơn \({x_1},{x_2},{x_3}\) với \({x_1} = b <  - 1 < {x_2} = 0 < 1 < {x_3} = c{\rm{\;}}(a > c)\)

\( \Rightarrow f\left( x \right) - 1 = k\left( {x - b} \right)x\left( {x - c} \right)(k > 0)\).

\( \Rightarrow \) Hàm số \(y = g\left( x \right)\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {a;b;0;1;c} \right\}\)

\(g\left( x \right) = \frac{{\left( {x + 1} \right)\left( {{x^2} - 1} \right)}}{{{f^2}\left( x \right) - 4f\left( x \right) + 3}} = \frac{{\left( {x + 1} \right)\left( {{x^2} - 1} \right)}}{{\left[ {f\left( x \right) - 3} \right]\left[ {f\left( x \right) - 1} \right]}} = \frac{{x - 1}}{{{k^2}x\left( {x - b} \right)\left( {x - c} \right)\left( {x - a} \right)}}\)

Nên  ĐTHS \(y = g\left( x \right)\) nhận đường thẳng \(y = 0\) làm TCN.

Tại các điểm \(x = a,x = b,x = 0,x = c\) mẫu của \(g\left( x \right)\) nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.

Và do hàm số xác định trên \(D = \mathbb{R}\backslash \left\{ {a;b;0;1;c} \right\}\) nên giới hạn một bên của hàm số \(y = g\left( x \right)\) tại các điểm \(x = a,x = b,x = 0,x = 1,x = c\) là các giới hạn vô cực.

Do đó, ĐTHS \(y = g\left( x \right)\) có 4 TCĐ: \(x = a,x = b,x = 0\)\(x = c\).                      

Vậy ĐTHS \(y = g\left( x \right)\) có 5 đường tiệm cận: \(1{\rm{\;}}\) TCN: \(y = 0\) và 4 TCĐ \(x = a,x = b,x = 0,x = c\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. thắng lợi trên mặt trận ngoại giao.
B. thắng lợi trên mặt trận quân sự.
C. cuộc phản chiến của lính Mỹ, đòi rút quân về nước.
D. phong trào phản đối chiến tranh trong lòng Mĩ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP