Hình vẽ biểu diễn số hạt α được phát ra từ một chất phóng xạ α theo thời gian t. Thang đo được sử dụng trong hình vẽ ứng với mỗi ô nằm ngang là 4s. Chu kì bán rã của chất phóng xạ là:

Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Tính chất của tích phân.
Lời giải
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Xác định đường tiệm cận
Lời giải
Ta có: \({f^2}\left( x \right) - 6f\left( x \right) + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) = 3\,\,\,\left( 1 \right)}\\{f\left( x \right) = 1\,\,\,\left( 2 \right)}\end{array}} \right.\)
Dựa vào đồ thị hàm số, ta thấy:
(1) có nghiệm \({x_1} = a > 1\) (nghiệm đơn) và \({x_2} = - 1\) (nghiệm kép) \( \Rightarrow f\left( x \right) - 3 = k\left( {x - a} \right){(x + 1)^2}(k > 0)\)
(2) có nghiệm ba nghiệm đơn \({x_1},{x_2},{x_3}\) với \({x_1} = b < - 1 < {x_2} = 0 < 1 < {x_3} = c{\rm{\;}}(a > c)\)
\( \Rightarrow f\left( x \right) - 1 = k\left( {x - b} \right)x\left( {x - c} \right)(k > 0)\).
\( \Rightarrow \) Hàm số \(y = g\left( x \right)\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {a;b;0;1;c} \right\}\)
Vì \(g\left( x \right) = \frac{{\left( {x + 1} \right)\left( {{x^2} - 1} \right)}}{{{f^2}\left( x \right) - 4f\left( x \right) + 3}} = \frac{{\left( {x + 1} \right)\left( {{x^2} - 1} \right)}}{{\left[ {f\left( x \right) - 3} \right]\left[ {f\left( x \right) - 1} \right]}} = \frac{{x - 1}}{{{k^2}x\left( {x - b} \right)\left( {x - c} \right)\left( {x - a} \right)}}\)
Nên ĐTHS \(y = g\left( x \right)\) nhận đường thẳng \(y = 0\) làm TCN.
Tại các điểm \(x = a,x = b,x = 0,x = c\) mẫu của \(g\left( x \right)\) nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.
Và do hàm số xác định trên \(D = \mathbb{R}\backslash \left\{ {a;b;0;1;c} \right\}\) nên giới hạn một bên của hàm số \(y = g\left( x \right)\) tại các điểm \(x = a,x = b,x = 0,x = 1,x = c\) là các giới hạn vô cực.
Do đó, ĐTHS \(y = g\left( x \right)\) có 4 TCĐ: \(x = a,x = b,x = 0\) và \(x = c\).
Vậy ĐTHS \(y = g\left( x \right)\) có 5 đường tiệm cận: \(1{\rm{\;}}\) TCN: \(y = 0\) và 4 TCĐ \(x = a,x = b,x = 0,x = c\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

