Trong một lớp có 25 bạn nam và 21 bạn nữ. Giáo viên chọn ngẫu nhiên 3 bạn trong lớp để làm cán bộ lớp. Khi đó:
Trong một lớp có 25 bạn nam và 21 bạn nữ. Giáo viên chọn ngẫu nhiên 3 bạn trong lớp để làm cán bộ lớp. Khi đó:
a) Số cách chọn ra ba bạn trong lớp là 15180 cách.
b) Xác suất của biến cố “Ba bạn được chọn đều là nam” bằng \(\frac{5}{{33}}\).
c) Xác suất của biến cố “Ba bạn được chọn đều là nữ” bằng \(\frac{{133}}{{1158}}\).
Quảng cáo
Trả lời:
a) Số cách chọn ra ba bạn trong lớp là \(C_{46}^3 = 15180\).
b) Gọi \(A\): “Ba bạn được chọn đều là nam”.
Số cách chọn được 3 bạn nam từ 25 bạn nam là \(C_{25}^3 = 2300\) cách. Suy ra \(n\left( A \right) = 2300\).
Xác suất của biến cố \(A\) là\(P\left( A \right) = \frac{{2300}}{{15180}} = \frac{5}{{33}}\).
c) Gọi \(B\): “Ba bạn được chọn đều là nữ”.
Số cách chọn được 3 bạn nữ là \(C_{21}^3 = 1330\) cách. Suy ra \(n\left( B \right) = 1330\).
Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{1330}}{{15180}} = \frac{{133}}{{1518}}\).
d) Số cách chọn được 2 bạn nam và 1 bạn nữ là \(C_{25}^2 \cdot C_{21}^1 = 6300\).
Suy ra xác suất của biến cố “Trong ba học sinh được chọn có hai bạn nam và một bạn nữ” bằng \(\frac{{6300}}{{15180}} = \frac{{105}}{{253}}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = {2^8}\).
Gọi \(A\) là biến cố “Học sinh được 1 điểm ở phần trả lời 2 câu hỏi”.
TH1: Mỗi câu 3 ý đúng có \(C_4^3 \cdot C_4^3\).
TH2: 1 câu 4 ý đúng, 1 câu 0 ý đúng là \(C_4^4 \cdot 1 + 1 \cdot C_4^4\).
Suy ra \(n\left( A \right) = C_4^3 \cdot C_4^3 + C_4^4 \cdot 1 + 1 \cdot C_4^4 = 18\).
Khi đó \(P\left( A \right) = \frac{{18}}{{{2^8}}} = \frac{9}{{128}}\).
Lời giải
Số phần tử của không gian mẫu là \({17^3}\).
Các số tự nhiên từ 1 đến 17 chia thành 3 nhóm:
Nhóm I gồm các số tự nhiên chia hết cho 3 gồm 5 số.
Nhóm II gồm các số tự nhiên chia cho 3 dư 1 gồm 6 số.
Nhóm III gồm các số tự nhiên chia cho 3 dư 2 gồm 6 số.
Để ba số có tổng chia hết cho 3 thì xảy ra các trường hợp sau:
Cả ba bạn viết được số thuộc nhóm I có \({5^3}\) cách.
Cả ba bạn viết được số thuộc nhóm II có \({6^3}\) cách.
Cả ba bạn viết được một số thuộc nhóm III có \({6^3}\) cách.
Mỗi bạn viết được một số thuộc một nhóm có \(3! \cdot \left( {5 \cdot 6 \cdot 6} \right)\).
Vậy có tất cả \({5^3} + {6^3} + {6^3} + 3! \cdot \left( {5 \cdot 6 \cdot 6} \right) = 1637\) kết quả thuận lợi cho biến cố.
Vậy xác suất cần tìm là \(P = \frac{{1637}}{{{{17}^3}}} = \frac{{1637}}{{4913}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.