Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trên hai mặt là số lẻ”.
Quảng cáo
Trả lời:
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
Gọi \(A\) là biến cố “Tổng số chấm trên hai mặt là số lẻ”.
Biến cố \(A\) xảy ra khi một lần gieo ra số chấm chẵn và một lần gieo ra số chấm lẻ.
Số cách gieo lần 1 ra chấm chẵn, lần 2 ra chấm lẻ là \(3 \cdot 3 = 9\).
Số cách gieo lần 1 ra chấm lẻ, lần 2 ra chấm chẵn là \(3 \cdot 3 = 9\).
Suy ra \(n\left( A \right) = 9 + 9 = 18\).
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{18}}{{36}} = \frac{1}{2}\). Chọn B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “Tích của hai số trên các thẻ được chọn là một số chia hết cho 3”;
\(\overline A \) là “Tích của hai số trên các thẻ được chọn một số không chia hết cho 3”.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{20}^2\).
\(n\left( {\overline A } \right) = C_{14}^2\). Khi đó \(P\left( {\overline A } \right) = \frac{{C_{14}^2}}{{C_{20}^2}} = \frac{{91}}{{190}}\).
Do đó \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{91}}{{190}} = \frac{{99}}{{190}} \approx 0,52\).
Câu 2
A. Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 5.
B. Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 12.
Lời giải
Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 12 là biến cố không thể. Chọn B.
Câu 3
a) Số phần tử của không gian mẫu là \(C_{15}^3\).
b) Công thức tính xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{n\left( \Omega \right)}}{{n\left( A \right)}}\).
c) Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{C_5^3}}{{C_{15}^3}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.