Câu hỏi:

07/01/2026 8 Lưu

Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trên hai mặt là số lẻ”.

A. \(\frac{1}{4}\).            
B. \(\frac{1}{2}\).             
C. \[\frac{1}{3}\].             
D. \(\frac{{11}}{{36}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).

Gọi \(A\) là biến cố “Tổng số chấm trên hai mặt là số lẻ”.

Biến cố \(A\) xảy ra khi một lần gieo ra số chấm chẵn và một lần gieo ra số chấm lẻ.

Số cách gieo lần 1 ra chấm chẵn, lần 2 ra chấm lẻ là \(3 \cdot 3 = 9\).

Số cách gieo lần 1 ra chấm lẻ, lần 2 ra chấm chẵn là \(3 \cdot 3 = 9\).

Suy ra \(n\left( A \right) = 9 + 9 = 18\).

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{18}}{{36}} = \frac{1}{2}\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Tích của hai số trên các thẻ được chọn là một số chia hết cho 3”;

\(\overline A \) là “Tích của hai số trên các thẻ được chọn một số không chia hết cho 3”.

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{20}^2\).

\(n\left( {\overline A } \right) = C_{14}^2\). Khi đó \(P\left( {\overline A } \right) = \frac{{C_{14}^2}}{{C_{20}^2}} = \frac{{91}}{{190}}\).

Do đó \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{91}}{{190}} = \frac{{99}}{{190}} \approx 0,52\).

Câu 2

A. Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 5.

B. Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 12.

C. Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 10.
D. Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 3.

Lời giải

Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 12 là biến cố không thể. Chọn B.

Câu 3

a) Số phần tử của không gian mẫu là \(C_{15}^3\).

Đúng
Sai

b) Công thức tính xác suất của biến cố \(A\)\(P\left( A \right) = \frac{{n\left( \Omega \right)}}{{n\left( A \right)}}\).

Đúng
Sai

c) Xác suất của biến cố \(B\)\(P\left( B \right) = \frac{{C_5^3}}{{C_{15}^3}}\).

Đúng
Sai
d) Xác suất để có số nam nhiều hơn nữ và có cả nam và nữ là \(\frac{{45}}{{91}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\Omega = \left\{ {1;3;5} \right\}\).                   
B. \(\Omega = \left\{ {2;4;6} \right\}\).                               
C. \[\Omega = \left\{ {1;2;3;4;5;6} \right\}\].         
D. \(\Omega = \left\{ {1;6} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

  A. \(4\).                             
B. \(6\).                              
C. \[8\].                             
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(A = \left\{ {1;3;5} \right\}\).                               
B. \(A = \left\{ {2;4;6} \right\}\).     
C. \[A = \left\{ {1;2;3;4;5;6} \right\}\].                     
D. \(A = \left\{ {2;5;6} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP