Câu hỏi:

08/01/2026 256 Lưu

Tại một nhà máy, gọi C(x) là tổng chi phí (tính theo triệu đồng) để sản xuất x tấn sản phẩm A trong một tháng. Khi đó, đạo hàm C'(x)  gọi là chi phí cận biên, cho biết tốc độ gia tăng tổng chi phí theo lượng gia tăng sản phẩm được sản xuất. Giả sử chi phí cận biên (tính theo triệu đồng trên tấn) của nhà máy được ước lượng bởi công thức:C'(x) = 5 -0,06x + 0,00072x2 với 0x150. Biết rằng C(0) = 30 triệu đồng, gọi là chi phí cố định. Tính tổng chi phí khi nhà máy sản xuất 100 tấn sản phẩm A trong tháng (nhập đáp án vào ô trống).

Đáp án  ____

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 470

Ta có: \[C\left( {100} \right) - C\left( 0 \right) = \int\limits_0^{100} {C'\left( x \right)dx} = \int\limits_0^{100} {\left( {5 - 0,06x + 0,00072{x^2}} \right)dx} = 440\].

Suy ra \(C\left( {100} \right) = C\left( 0 \right) + 440 = 30 + 440 = 470\) (triệu đồng).

Vậy khi nhà máy sản xuất 100 tấn sản phẩm A trong tháng thì tổng chi phí là 470 triệu đồng.

Đáp án cần nhập là: \(470\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tại \({t_0} = 70\) ta có: \(T\left( {70} \right) = 300\).

\(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ - }} \left( {20 + 4t} \right) = 300\); \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} \left( {a - 2t} \right) = a - 140\).

Hàm số liên tục trên tập xác định khi: \(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = T\left( {70} \right)\)

\( \Leftrightarrow a - 140 = 300\)\( \Leftrightarrow a = 440\). Vậy giá trị của \(a = 440^\circ {\rm{C}}\). Chọn A.

Câu 2

A. \(\frac{{2750\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).   
B. \(\frac{{2500\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).      
C. \(\frac{{2050\pi }}{3}\)\(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).            
D. \(\frac{{2250\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Lời giải

Chọn hệ trục tọa độ như hình vẽ bên.

Ta gọi thể tích của chiếc mũ là \(V\).

Thể tích của khối trụ có bán kính đáy bằng \(OA = 10\)cm và đường cao \(OO' = 5\)cm là \({V_1}\).

Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong \(AB\) và hai trục tọa độ quanh trục \(Oy\) \({V_2}\). Khi đó, ta có \(V = {V_1} + {V_2}\).

Ta có \({V_1} = 5 \cdot {10^2}\pi = 500\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do parabol có đỉnh \(A\) nên nó có phương trình dạng \(\left( P \right):y = a{\left( {x - 10} \right)^2}\). Vì \(\left( P \right)\) qua điểm \(B\left( {0;20} \right)\) nên \(a = \frac{1}{5}\). Do đó, \(\left( P \right):y = \frac{1}{5}{\left( {x - 10} \right)^2}\). Từ đó suy ra \(x = 10 - \sqrt {5y} \) (do \(x < 10\)).

Suy ra \({V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } \right)}^2}{\rm{dy}}} = \pi \left( {3000 - \frac{{8000}}{3}} \right) = \frac{{1000}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do đó \(V = {V_1} + {V_2} = \frac{{1000}}{3}\pi + 500\pi = \frac{{2500}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\). Chọn B.

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ “cách điệu” cho ông già Noel (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP