Câu hỏi:

11/01/2026 7 Lưu

Cho hình vẽ dưới đây biểu diễn định lí: “Hai tia phân giác của hai góc đối đỉnh là hai tia đối nhau”.

Cho hình vẽ dưới đây biểu diễn định lí: “Hai tia phân giác của hai góc đối đỉnh là hai tia đối nhau”. (ảnh 1)

Quan sát hình vẽ minh họa bài toán, khi đó:

a) Giả thiết của bài toán là \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

Đúng
Sai

b) \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

Đúng
Sai

c) \(\widehat {tOt'} = 180^\circ .\)

Đúng
Sai
d) Kết luận của bài toán là hai tia \(Ot,\,\,t'O\) là hai tia đối nhau.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Ta có giả thiết của bài toán là: \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác

của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

b) Đúng.

\(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh nên \(\widehat {xOy} = \,\widehat {x'Oy'}\).

\(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\) nên \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

c) Đúng.

Ta có: \(\widehat {tOt'} = \widehat {{O_1}} + \widehat {xOy'} + \widehat {{O_3}} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {xOy'} = \widehat {xOy} + \widehat {xOy'} = \widehat {yOy'} = 180^\circ .\)

d) Sai.

Kết luận của bài toán là hai tia \(Ot,\,\,Ot'\) là hai tia đối nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có giả thiết, kết luận cho định lí trên là:

GT

\({\widehat K_1}\)\({\widehat K_3}\) là hai góc đối đỉnh

KL

\({\widehat K_1} = {\widehat K_3}\)

Câu 3

A. Hai góc đối đỉnh thì bằng nhau.

B. Hai góc kề nhau thì có tổng số đo là \[180^\circ \].

C. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song với nhau.

D. Đường thẳng vuông góc với một trong hai đường thẳng song song thì đường thẳng đó vuông góc với đường thẳng còn lại.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Dùng hình vẽ để từ giả thiết suy ra kết luận.

B. Dùng đo đạc thực tế để suy ra kết luận từ giả thiết.

C. Dùng lập luận để từ giả thiết suy ra kết luận.

D. Cả A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. “Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba”.

B. “Chúng song song với nhau”.

C. “Hai đường thẳng phân biệt cùng vuông góc”.

D. “Hai đường thẳng phân biệt”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\].        

Đúng
Sai

b) \[\widehat {NOB} = \widehat {MOB} = \frac{{\widehat {COB}}}{2}\].

Đúng
Sai

c) \[\widehat {NOB} + \widehat {MOB} = 90^\circ \].

Đúng
Sai
d) Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng vuông góc với nhau.

B. Một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.

C. Hai góc bằng nhau thì đối đỉnh.

D. Hai góc đối đỉnh thì bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP