Để chuẩn bị làm thí nghiệm, cô giáo chia 2 lít hóa chất thành ba phần tỉ lệ thuận với 2, 3, 5 và đựng trong ba chiếc lọ. Hỏi chiếc lọ đựng nhiều hóa chất nhất chứa bao nhiêu lít?
Để chuẩn bị làm thí nghiệm, cô giáo chia 2 lít hóa chất thành ba phần tỉ lệ thuận với 2, 3, 5 và đựng trong ba chiếc lọ. Hỏi chiếc lọ đựng nhiều hóa chất nhất chứa bao nhiêu lít?
Quảng cáo
Trả lời:
Đáp án:
Gọi \(x,y,z\) lần lượt là số lít hóa chất chứa trong ba lọ.
Theo đề, ta có: \(x + y + z = 2\) và \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2} = \frac{y}{3} = \frac{z}{5} = \frac{{x + y + z}}{{2 + 3 + 5}} = \frac{2}{{10}} = \frac{1}{5}\).
Như vậy \(\frac{x}{2} = \frac{1}{5}\) hay \(x = \frac{2}{5}\); \(\frac{y}{3} = \frac{1}{5}\) hay \(y = \frac{3}{5}\); \(\frac{z}{5} = \frac{1}{5}\) hay \(z = 1\).
Do đó, lọ đựng nhiều hóa chất nhất chưa 1 lít hóa chất.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số lít xăng mà 12 xe tiêu thụ hết là \[x\]. Ta có số lí xăng và số lượng xe là hai đại lượng tỉ lệ thuận.
Do đó, ta có: \[\frac{x}{{12}} = \frac{{70}}{8}\] nên \[x = \frac{{70.12}}{8} = 105\] (lít).
Lời giải
Gọi độ dài ba cạnh của tam giác \(x;\,\,y;\,\,z\) \(\left( {x,\,\,y,\,\,z > 0} \right)\).
Theo đề, ta có: \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\) và \(x + y + z = 48\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{48}}{{12}} = 4\).
Suy ra \(x = 12;\,\,y = 16;\,\,z = 20\).
Độ dài cạnh lớn nhất của tam giác là 20 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.