Chị Linh bán được \(111\) chiếc áo gồm ba loại. Áo phông màu trắng giá \(100\) nghìn đồng một chiếc áo, áo phông màu đen giá \(80\) nghìn đồng một chiếc áo, áo phông màu xanh giá \(120\) nghìn đồng một chiếc. Biết rằng số tiền chị Linh bán được của ba loại áo phông là như nhau. Gọi \(x;y;z\) lần lượt là số áo phông chị Linh bán gồm áo phông màu trắng, áo phông màu đen và áo phông màu xanh.
a) Điều kiện của \(x;y;z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 111.\)
b) Phương trình biểu diễn tổng số áo chị Linh bán được là \(x + y + z = 111\).
c) Vì số tiền chị Linh bán được của mỗi loại áo phông là như nhau nên ta có tỉ lệ thức \(\frac{x}{{\frac{1}{{80}}}} = \frac{y}{{\frac{1}{{100}}}} = \frac{z}{{\frac{1}{{120}}}}\).
Quảng cáo
Trả lời:
a) Đúng.
Gọi \(x;y;z\) lần lượt là số áo phông chị Linh mua gồm áo phông màu trắng, áo phông màu đen và áo phông màu xanh.
Điều kiện của \(x;y;z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 111.\)
b) Đúng.
Phương trình biểu diễn tổng số áo chị Linh bán được là \(x + y + z = 111\).
c) Sai.
Vì số tiền chị Linh bán được của mỗi loại áo phông là như nhau nên ta có tỉ lệ thức \(100x = 80y = 120z\) hay \(\frac{x}{{\frac{1}{{100}}}} = \frac{y}{{\frac{1}{{80}}}} = \frac{z}{{\frac{1}{{120}}}}\).
d) Đúng.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{{\frac{1}{{100}}}} = \frac{y}{{\frac{1}{{80}}}} = \frac{z}{{\frac{1}{{120}}}} = \frac{{x + y + z}}{{\frac{1}{{100}} + \frac{1}{{80}} + \frac{1}{{120}}}} = \frac{{111}}{{\frac{{37}}{{1200}}}} = 3{\rm{ }}600\).
Suy ra \(x = \frac{1}{{100}}.3{\rm{ }}600 = 36;y = \frac{1}{{80}}.3{\rm{ }}600 = 45;z = \frac{1}{{120}}.3{\rm{ }}600 = 30\).
Vậy chị Linh bán số áo phông màu trắng, đen, xanh lần lượt là \(36\) áo, \(45\) áo và \(30\) áo.
Do đó, chị Linh bán số áo phông đen nhiều hơn số áo phông xanh là \(15\) chiếc áo.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 5 nghìn đồng.
B. 6 nghìn đồng.
Lời giải
Đáp án đúng là: A
Gọi giá mỗi cái bánh là \(x\,\,\left( {x > 0} \right)\).
Theo đề, ta có: \(20 \cdot 2 = 8 \cdot x\) nên \(x = \frac{{20 \cdot 2}}{8} = 5\) (nghìn đồng).
Lời giải
Gọi \(x\) là số mét vải loại II mua được (\(x > 0,\) mét)
Vì có cùng số tiền nên số mét vải mỗi loại mua được tỉ lệ nghịch với giá tiền 1 mét, ta có:
\(\frac{{60}}{x} = \frac{{120}}{{100}}\) suy ra \(x = \frac{{60.100}}{{120}} = 50\) (thỏa mãn).
Vậy số mét vải loại II mua được là \(50{\rm{ m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.