Câu hỏi:

13/01/2026 85 Lưu

Một hệ làm nóng nước bằng năng lượng mặt trời có hiệu suất chuyển đổi 22%, cường độ bức xạ mặt trời lên bộ thu nhiệt là 980W/m2, diện tích bộ thu là 20m2. Cho nhiệt dung riêng của nước là 4180 J/kg.K khối lượng riêng của nước là 1000kg/m3.

a) Năng lượng Mặt Trời có ích cho việc làm nóng nước chiếm 22% năng lượng toàn phần.
Đúng
Sai
b) Công suất bức xạ chiếu lên bộ thu nhiệt là 20 kW.
Đúng
Sai
c) Trong 30 phút, năng lượng mặt trời chiếu lên bộ thu nhiệt là 35,28 MJ
Đúng
Sai
d) Nếu hệ thống đó làm nóng 40 lít nước thì trong khoảng thời gian 30 phút, nhiệt độ của nước tăng thêm 46,4°C.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

a) Hiệu suất chuyển đổi là 22% nên năng lượng Mặt Trời có ích cho việc làm nóng nước chiếm 22% năng lượng toàn phần.

b) Công suất bức xạ chiếu lên bộ thu nhiệt là \(P = 980 \cdot 20 = 19600{\rm{ W}} = 19,6{\rm{ kW}}\).

c) Trong 30 phút, năng lượng mặt trời chiếu lên bộ thu nhiệt là:

\(W = P \cdot t = 19600 \cdot 30 \cdot 60 = 35280000{\rm{ J}} = 35,28{\rm{ MJ}}\).

d) Nếu hệ thống đó làm nóng 40 lít nước thì trong khoảng thời gian 30 phút, nhiệt độ của nước tăng thêm:

\(Q = 22\%  \cdot W = 35280000 \cdot 0,22 = 7761600{\rm{ J}}\)

\( \Leftrightarrow Q = mc\Delta t = 40 \cdot 4180 \cdot \Delta t \Rightarrow \Delta t = {46,4^^\circ }{\rm{C}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Khối lượng mol trung bình của không khí là 28,8 g/mol.
Đúng
Sai
b) Nung nóng khí bên trong khí cầu lên thì áp suất trong khi cầu cũng tăng lên.
Đúng
Sai
c) Để quả khí cầu bắt đầu bay lên, ta cần nung nóng khí bên trong khí cầu đến nhiệt độ 68,7°C.
Đúng
Sai
d) Sau khi nung nóng khí bên trong khí cầu, người ta bịt kín lỗ hở lại và thả cho quá khí cầu bay lên. Cho nhiệt độ khí bên trong khi cầu t2 = 110 °C không đổi. Nhiệt độ của khí quyển và gia tốc trọng trường ở mặt đất coi như không đổi theo độ cao, còn khối lượng riêng của khí quyển phụ thuộc vào độ cao h (so với mặt đất) theo công thức \[\rho  = {\rho _0}.e\frac{{{\rho _0}gh}}{{{p_1}}}\]; với e = 2,718. Độ cao cực đại mà quả khi cầu lên được là 796,8 m.
Đúng
Sai

Lời giải

Lời giải:

a) Phương trình Clapeyron với khối lượng riêng: \[\frac{{{p_1}}}{{{T_1}{\rho _0}}} = \frac{R}{M}.\]

Thay số vào phương trình tìm khối lượng riêng của không khí:

          \(\frac{{{{1,013.10}^5}}}{{1,2\left( {20 + 273} \right)}} = \frac{{8,31}}{M} \Rightarrow M \approx 0,0288\left( {kg/mol} \right) = 28,8\left( {g/mol} \right)\)

⟶ a đúng.

b) Vì ban đầu khí cầu có lỗ hở ở dưới nên áp suất luôn bằng áp suất khí quyển.

⟶ b sai.

c) Khí cầu bắt đầu bay lên:

          \({F_A} = {P_v} + {P_k} \Rightarrow {\rho _0}.{g_V} = mg + {\rho _k}gV \Rightarrow {\rho _0}V = m + {\rho _k}V\left( 1 \right)\)

Thay số vào (1) ta được:

          \(1,2.1,15 = 0,2 + {\rho _k}.1,15 \Rightarrow {\rho _k} = \frac{{118}}{{115}}\left( {kg/{m^3}} \right)\)

Do \({p_1} = const \Rightarrow {\rho _0}{T_1} = {\rho _k}T\)

⇒ \(1,2.\left( {20 + 273} \right) = \frac{{118}}{{115}}.T \Rightarrow T \approx 342,7K \Rightarrow t \approx {69,7^0}C\)

⟶ c sai.

d) Với nhiệt độ \({t_2} = {110^0}C\) thì ban đầu \({F_A} > P\) cho đến khi \({F_A} = P\) thì đạt độ cao cực đại.

Áp dụng phương trình Clapeyron với khối lượng riêng, với áp suất không đổi ta được: \({\rho _0}{T_1} = {\rho _2}{T_2} \Rightarrow 1,2.\left( {20 + 273} \right) = {\rho _2}.\left( {110 + 273} \right) \Rightarrow {\rho _2} = \frac{{1758}}{{1915}}\left( {kg/{m^3}} \right)\)

Khi đến độ cao cực đại: \({F_A} = P\)

\( \Leftrightarrow {F_A} = {P_v} + {P_k}\)

\( \Rightarrow \rho  \cdot gV = mg + {\rho _2}gV\)

\( \Rightarrow \rho V = m + {\rho _2}V\quad (2)\)

Thay số vào \((2)\) ta được:

\(\rho  \cdot 1,15 = 0,2 + \frac{{1758}}{{1915}} \cdot 1,15\)

\( \Rightarrow \rho  \approx 1,09193{\rm{ (kg/}}{{\rm{m}}^3}{\rm{)}}\)

Với \(\rho  = {\rho _0}{e^{\frac{{{\rho _0}gh}}{{{p_1}}}}} \Leftrightarrow 1,09193 = 1,2 \cdot {2,718^{\frac{{1,2 \cdot 10 \cdot h}}{{1,013 \cdot {{10}^5}}}}}\)

\( \Rightarrow h \approx 796,8{\rm{ (m)}}\)

\( \to \) d đúng.

Lời giải

Lời giải:

Xét lượng khí trong bình khi chưa bơm; \(n\) là số quả bóng bơm được.

Trạng thái 1:

Thể tích: \({V_1} = 30{\rm{ l}}\)

Áp suất: \({p_1} = 6{\rm{ MPa}} = 6 \cdot {10^6}{\rm{ Pa}}\)

Nhiệt độ: \({T_1} = 37 + 273 = 310{\rm{ K}}\)

Trạng thái 2:

Thể tích: \({V_2} = 30 + n \cdot 1,5\)

Áp suất: \({p_2} = 1,05 \cdot {10^5}{\rm{ Pa}}\)

Nhiệt độ: \({T_2} = 12 + 273 = 285{\rm{ K}}\)

Áp dụng phương trình trạng thái của khí lí tưởng ta có:

\(\frac{{{p_1} \cdot {V_1}}}{{{T_1}}} = \frac{{{p_2} \cdot {V_2}}}{{{T_2}}}\)

\( \Leftrightarrow \frac{{6 \cdot {{10}^6} \cdot 30}}{{310}} = \frac{{(30 + n \cdot 1,5) \cdot 1,05 \cdot {{10}^5}}}{{285}}\)

\( \Rightarrow n = 1030\)(quả)

Kết luận: Vậy dùng bình này bơm được 1030 quả.

Câu 4

a. Nội năng của nước trong bể bơi thay đổi chủ yếu là do quá trình truyền nhiệt từ cơ thể vận động viên sang nước trong bể bơi.
Đúng
Sai
b. Độ biến thiên nội năng của nước trong bể bơi bằng độ biến thiên nội năng cơ thể của vận động viên.
Đúng
Sai
c. Cơ thể vận động viên đã truyền một nhiệt lượng \(2750{\rm{ J}}\) cho bể nước.
Đúng
Sai
d. Độ biến thiên nội năng của nước trong bể bơi là \(2750{\rm{ J}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP