Một hộp chứa 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên hai tấm thẻ từ hộp đó.
Một hộp chứa 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên hai tấm thẻ từ hộp đó.
a) Số phần tử của không gian mẫu là 90.
b) Xác suất để rút được hai tấm thẻ được đánh số cùng chia hết cho 2 là \(\frac{2}{9}\).
c) Xác suất để rút được hai tấm thẻ được đánh số đều là số nguyên tố là \(\frac{1}{{15}}\).
Quảng cáo
Trả lời:
a) Số phần tử của không gian mẫu là \(C_{10}^2 = 45\).
b) Gọi \(A\) là biến cố “hai tấm thẻ được đánh số cùng chia hết hết cho 2”.
Các số chia hết cho 2 là \(\left\{ {2;4;6;8;10} \right\} \Rightarrow n\left( A \right) = C_5^2 = 10\).
Do đó \(P\left( A \right) = \frac{{10}}{{45}} = \frac{2}{9}\).
c) Gọi \(B\) là biến cố “hai tấm thẻ được đánh số đều là số nguyên tố”.
Các số nguyên tố là \(\left\{ {2;3;5;7} \right\}\)\( \Rightarrow n\left( B \right) = C_4^2 = 6\).
Do đó \(P\left( B \right) = \frac{6}{{45}} = \frac{2}{{15}}\).
d) Gọi \(C\) là biến cố “hai tấm thẻ có tổng là một số lẻ”.
Từ 1 đến 10 có 5 số chẵn và 5 số lẻ.
Để tổng 2 số là số lẻ thì cần lấy được 1 số chẵn và số lẻ. Khi đó \(n\left( C \right) = C_5^1 \cdot C_5^1 = 25\).
Do đó \(P\left( C \right) = \frac{{25}}{{45}} = \frac{5}{9}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số phần tử của không gian mẫu là \(8! = 40320\).
Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.
TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.
TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.
Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).
Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).
Câu 2
a) Xác suất để có đúng một màu bằng \(\frac{1}{{429}}\).
b) Xác suất để có đúng hai màu đỏ và vàng bằng \(\frac{1}{{429}}\).
c) Xác suất để có ít nhất 1 bi đỏ bằng \(\frac{{139}}{{143}}\).
Lời giải
Số phần tử của không gian mẫu là \(C_{14}^6 = 3003\).
a) Gọi \(A\) là biến cố “Có đúng một màu”. Khi đó \(n\left( A \right) = C_7^6 = 7\).
Do đó \(P\left( A \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).
b) Gọi \(B\) là biến cố “Có đúng hai màu đỏ và vàng ” \( \Rightarrow n\left( B \right) = C_7^6 = 7\).
Do đó \(P\left( B \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).
c) Gọi \(C\) là biến cố “Có ít nhất 1 bi đỏ”.
\(\overline C \) là biến cố “Không có bi màu đỏ” \( \Rightarrow n\left( {\overline C } \right) = C_9^6 = 84\).
Khi đó \(P\left( {\overline C } \right) = \frac{{84}}{{3003}} = \frac{4}{{143}}\). Do đó \(P\left( C \right) = 1 - \frac{4}{{143}} = \frac{{139}}{{143}}\).
d) Gọi \(D\) là biến cố “Có ít nhất 2 bi xanh”.
\(\overline D \) là biến cố “Có nhiều nhất 1 bi xanh”.
TH1: Không có bi xanh có \(C_7^6 = 7\) cách.
TH2: Có 1 bi xanh có \(C_7^1 \cdot C_7^5 = 147\) cách.
Suy ra \(n\left( {\overline D } \right) = 154\). Do đó \(P\left( {\overline D } \right) = \frac{{154}}{{3003}} = \frac{2}{{39}} \Rightarrow P\left( D \right) = \frac{{37}}{{39}}\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.