Câu hỏi:

14/01/2026 72 Lưu

Xếp ngẫu nhiên 4 bạn nam và 4 bạn nữ thành một hàng dọc. Tính xác suất của biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau” (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,03

Số phần tử của không gian mẫu là \(8! = 40320\).

Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.

TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.

TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.

Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).

Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Xác suất để có đúng một màu bằng \(\frac{1}{{429}}\).

Đúng
Sai

b) Xác suất để có đúng hai màu đỏ và vàng bằng \(\frac{1}{{429}}\).

Đúng
Sai

c) Xác suất để có ít nhất 1 bi đỏ bằng \(\frac{{139}}{{143}}\).

Đúng
Sai
d) Xác suất để có ít nhất 2 bi xanh bằng \(\frac{{32}}{{39}}\).
Đúng
Sai

Lời giải

Số phần tử của không gian mẫu là \(C_{14}^6 = 3003\).

a) Gọi \(A\) là biến cố “Có đúng một màu”. Khi đó \(n\left( A \right) = C_7^6 = 7\).

Do đó \(P\left( A \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).

b) Gọi \(B\) là biến cố “Có đúng hai màu đỏ và vàng ” \( \Rightarrow n\left( B \right) = C_7^6 = 7\).

Do đó \(P\left( B \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).

c) Gọi \(C\) là biến cố “Có ít nhất 1 bi đỏ”.

\(\overline C \) là biến cố “Không có bi màu đỏ” \( \Rightarrow n\left( {\overline C } \right) = C_9^6 = 84\).

Khi đó \(P\left( {\overline C } \right) = \frac{{84}}{{3003}} = \frac{4}{{143}}\). Do đó \(P\left( C \right) = 1 - \frac{4}{{143}} = \frac{{139}}{{143}}\).

d) Gọi \(D\) là biến cố “Có ít nhất 2 bi xanh”.

\(\overline D \) là biến cố “Có nhiều nhất 1 bi xanh”.

TH1: Không có bi xanh có \(C_7^6 = 7\) cách.

TH2: Có 1 bi xanh có \(C_7^1 \cdot C_7^5 = 147\) cách.

Suy ra \(n\left( {\overline D } \right) = 154\). Do đó \(P\left( {\overline D } \right) = \frac{{154}}{{3003}} = \frac{2}{{39}} \Rightarrow P\left( D \right) = \frac{{37}}{{39}}\).

Đáp án: a) Đúng;    b) Đúng;     c) Đúng;    d) Sai.

Lời giải

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{15}^4 = 1365\).

Gọi \(A\) là biến cố “Chọn được 4 viên bi có đủ ba màu và số bi đỏ nhiều nhất”.

Khi đó \(n\left( A \right) = C_4^1 \cdot C_5^2 \cdot C_6^1 = 240\).

Khi đó \(P\left( A \right) = \frac{{240}}{{1365}} = \frac{{16}}{{91}}\). Chọn A.

Câu 3

a) Số phần tử của không gian mẫu là 90.

Đúng
Sai

b) Xác suất để rút được hai tấm thẻ được đánh số cùng chia hết cho 2 là \(\frac{2}{9}\).

Đúng
Sai

c) Xác suất để rút được hai tấm thẻ được đánh số đều là số nguyên tố là \(\frac{1}{{15}}\).

Đúng
Sai
d) Xác suất để rút được hai tấm thẻ có tổng là một số lẻ là \(\frac{5}{9}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Không gian mẫu của phép thử trên có 16 phần tử.

Đúng
Sai

b) Gọi biến cố \(A\): “Kết quả nhận được cả 4 lần tung đều là mặt ngửa”. Khi đó ta có biến cố đối \(\overline A \): “Kết quả nhận được cả 4 lần gieo đều là mặt sấp”.

Đúng
Sai

c) Xác suất của biến cố \(B\): “Trong 4 lần tung, có ít nhất 1 lần được kết quả là mặt sấp” là \(\frac{{15}}{{16}}\).

Đúng
Sai
d) Xác suất của biến cố \(C\): “Trong 4 lần tung, có đúng 2 lần tung được kết quả là mặt ngửa” là \(\frac{3}{8}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{5}{6}\).             
B. \(\frac{1}{2}\).             
C. \(\frac{5}{7}\).            
D. \(\frac{3}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP