Câu hỏi:

14/01/2026 6 Lưu

Cho phương trình \({\log _{\frac{1}{2}}}\left( {m + 6{\rm{x}}} \right) + {\log _2}\left( {3 - 2{\rm{x}} - {x^2}} \right) = 0\). Có bao nhiêu giá trị nguyên dương của tham số \[m\] để phương trình đã cho có nghiệm?

A. 17.    
B. 23.
C. 9.        
D. 15.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({\log _{\frac{1}{2}}}\left( {m + 6{\rm{x}}} \right) + {\log _2}\left( {3 - 2{\rm{x}} - {x^2}} \right) = 0 \Leftrightarrow {\log _2}\left( {3 - 2{\rm{x}} - {x^2}} \right) = {\log _2}\left( {m + 6{\rm{x}}} \right)\)

Có bao nhiêu giá trị nguyên dương của tham số m để phương trình đã cho có nghiệm? (ảnh 1)

Xét hàm số \(f\left( x \right) = - {x^2} - 8{\rm{x}} + 3\) trên \(\left( { - 3;1} \right)\), có \(f'\left( x \right) = - 2{\rm{x}} - 8 < 0;\forall x \in \left( { - 3;1} \right)\).

Khi đó, hàm số \(f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 3;1} \right)\).

Do đó, để \(m = f\left( x \right)\) có nghiệm thuộc \(\left( { - 3;1} \right) \Leftrightarrow f\left( 1 \right) < m < f\left( { - 3} \right) \Leftrightarrow - 6 < m < 18\).

Kết hợp với \[m\] nguyên dương có 17 giá trị cần tìm. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(k = 620;\,\,a = 2,758\).        
B. \(k = 620;\,\,a = 0,138\).   
  C. \(k = 620;\,\,a = 1,05\).   
D. \(k = 620;\,\,a = 1,052\).

Lời giải

Khi \(d = 0\) thì \(F = 620\) và khi \(d = 20\) thì \(F = 1710\).

Ta có hệ phương trình: \(\left\{ \begin{array}{l}620 = k{a^0}\\1710 = k{a^{20}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\{a^{20}} = \frac{{1710}}{{620}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\a = \sqrt[{20}]{{\frac{{1710}}{{620}}}} \approx 1,052\end{array} \right.\).

Vậy \(k = 620;\,\,a = 1,052\). Chọn D.

Lời giải

Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).

Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).

Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)

Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.

Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)\(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.

\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( { - \infty ; - 1} \right)\]. 
B. \(\left( { - \infty \,;\,1} \right)\).    
C. \(\left( { - 1\,;\,1} \right)\).               
D. \(\left( {4\,;\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP