Cho hàm số có đồ thị (C). Có bao nhiêu giá trị của m để (C) cắt trục Ox tại 3 điểm phân biệt A(1;0), B, C sao cho tiếp tuyến tại B và C của C song song với nhau (nhập đáp án vào ô trống)?
Đáp án __
Quảng cáo
Trả lời:
Phương trình hoành độ giao điểm là: \({x^3} - 3\left( {m + 1} \right){x^2} + 3m{\rm{x}} + 2 = 0\)
\( \Leftrightarrow \left( {x - 1} \right)\left[ {{x^2} - \left( {3m + 2} \right)x - 2} \right] = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\g\left( x \right) = {x^2} - \left( {3m + 2} \right)x - 2 = 0\end{array} \right.\).
+) Để \(\left( C \right)\) cắt Ox tại 3 điểm phân biệt \( \Leftrightarrow g\left( x \right) = 0\) có 2 nghiệm phân biệt khác 1.
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta = {\left( {3m + 2} \right)^2} + 8 > 0\\g\left( 1 \right) = - 3m - 3 \ne 0\end{array} \right.\left( * \right)\).
Khi đó gọi, \(B\left( {{x_1};0} \right),C\left( {{x_2};0} \right) \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = 3m + 2\\{x_1}{x_2} = - 2\end{array} \right.\left( {{x_1} \ne {x_2}} \right)\).
Ta có: \({k_1} = y'\left( {{x_1}} \right) = 3{\rm{x}}_1^2 - 6\left( {m + 1} \right){x_1} + 3m,{k_2} = y'\left( {{x_2}} \right) = 3x_2^2 - 6\left( {m + 1} \right){x_2} + 3m\)
Do tiếp tuyến tại B và C song song nên ta có: \({k_1} = {k_2} \Leftrightarrow x_1^2 - 2\left( {m + 1} \right){x_1} = x_2^2 - 2\left( {m + 1} \right){x_2}\)
\( \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2} - 2m - 2} \right) = 0 \Leftrightarrow {x_1} + {x_2} = 2m + 2 \Leftrightarrow 3m + 2 = 2m + 2 \Leftrightarrow m = 0\) (t/m).
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án cần nhập là: 1.Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Khi \(d = 0\) thì \(F = 620\) và khi \(d = 20\) thì \(F = 1710\).
Ta có hệ phương trình: \(\left\{ \begin{array}{l}620 = k{a^0}\\1710 = k{a^{20}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\{a^{20}} = \frac{{1710}}{{620}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\a = \sqrt[{20}]{{\frac{{1710}}{{620}}}} \approx 1,052\end{array} \right.\).
Vậy \(k = 620;\,\,a = 1,052\). Chọn D.
Câu 2
Lời giải
Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).
Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).
Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)
Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.
Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)và \(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.
\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


