Câu hỏi:

14/01/2026 5 Lưu

Cho hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên. Tìm số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^2} - 2x} \right)\) trên khoảng \(\left( {0; + \infty } \right)\).

Cho hàm số y= f'(x) có đồ thị như hình bên (ảnh 1)

A. \(3\).  
B. \(2\)
C. \(4\).  
D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(g'\left( x \right) = \left( {2x - 2} \right)f'\left( {{x^2} - 2x} \right)\). Có \(g'\left( x \right) = 0\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x - 2 = 0}\\{{x^2} - 2x = - 1}\\{{x^2} - 2x = 2}\end{array}} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 1 + \sqrt 3 \\x = 1 - \sqrt 3 \end{array} \right.\).

Do \(g'\left( x \right)\) đổi dấu khi qua các nghiệm \(x = 1\)\(x = 1 + \sqrt 3 \) nên \(g\left( x \right) = f\left( {{x^2} - 2x} \right)\) có 2 điểm cực trị trên khoảng \(\left( {0; + \infty } \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(k = 620;\,\,a = 2,758\).        
B. \(k = 620;\,\,a = 0,138\).   
  C. \(k = 620;\,\,a = 1,05\).   
D. \(k = 620;\,\,a = 1,052\).

Lời giải

Khi \(d = 0\) thì \(F = 620\) và khi \(d = 20\) thì \(F = 1710\).

Ta có hệ phương trình: \(\left\{ \begin{array}{l}620 = k{a^0}\\1710 = k{a^{20}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\{a^{20}} = \frac{{1710}}{{620}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\a = \sqrt[{20}]{{\frac{{1710}}{{620}}}} \approx 1,052\end{array} \right.\).

Vậy \(k = 620;\,\,a = 1,052\). Chọn D.

Lời giải

Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).

Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).

Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)

Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.

Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)\(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.

\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.

Câu 3

A. \[\left( { - \infty ; - 1} \right)\]. 
B. \(\left( { - \infty \,;\,1} \right)\).    
C. \(\left( { - 1\,;\,1} \right)\).               
D. \(\left( {4\,;\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = {x^2}\].  
B. \[y = {x^3} - 3x + 4\].     
C. \[y = \frac{{2x + 1}}{{x - 1}}\].   
D. \[y = \frac{{{x^2} - x + 1}}{{x - 1}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP