Câu hỏi:

14/01/2026 24 Lưu

Cho tứ diện \[ABCD\], trong đó có tam giác \[BCD\] không cân. Gọi \[M,\,\,N\] lần lượt là trung điểm của \[AB,\,\,CD\]\[G\] là trung điểm của đoạn \[MN.\] Gọi \[{A_1}\] là giao điểm của \[AG\]\[\left( {BCD} \right)\]. Khẳng định nào sau đây đúng?

A. \[{A_1}\] là tâm đường tròn tam giác \[BCD\].
B. \({A_1}\) là tâm đường tròn nội tiếp tam giác \[BCD\].
C. \({A_1}\) là trực tâm tam giác \[BCD\].
D. \({A_1}\) là trọng tâm tam giác \[BCD\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mặt phẳng \[\left( {ABN} \right)\] cắt mặt phẳng \[\left( {BCD} \right)\] theo giao tuyến \[BN\,.\] \[AG \subset \left( {ABN} \right)\] suy ra \[AG\] cắt \[BN\] tại điểm \[{A_1}\,.\]

Qua \[M\] dựng \[MP\]//\[A{A_1}\] với \[P \in BN\,.\] \[M\] là trung điểm của \[AB\] suy ra \[P\] là trung điểm \[B{A_1}\, \Rightarrow \,\,BP = P{A_1}\,\,\,\,\,\,\,\left( 1 \right).\]

Tam giác \[MNP\]\[MP\]//\[G{A_1}\]\[G\] là trung điểm của \[MN\,.\] Suy ra  \[{A_1}\] là trung điểm của \[NP\,\, \Rightarrow \,\,P{A_1} = N{A_1}\,\,\,\,\left( 2 \right).\]

Từ \[\left( 1 \right),\left( 2 \right)\] suy ra \[BP = P{A_1} = {A_1}N\,\, \Rightarrow \,\,\frac{{B{A_1}}}{{BN}} = \frac{2}{3}\]\[N\] là trung điểm của \[CD\,.\]

Do đó, \[{A_1}\] là trọng tâm của tam giác \[BCD\,.\] Chọn D.

Cho tứ diện ABCD, trong đó có tam giác BCD không cân (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).

Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).

Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)

Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.

Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)\(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.

\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.

Câu 2

A. sustainability.         

B. unsustainable.          

C. sustain.            

D. sustainable.

Lời giải

Kiến thức về từ loại

A. sustainability (n): tính bền vững

B. unsustainable (adj): không bền vững        

C. sustain (v): duy trì

D. sustainable (adj): bền vững

Chỗ trống cần 1 tính từ để bổ nghĩa cho danh từ “world” phía sau. Dựa vào nghĩa, chọn D.

Dịch: Bình đẳng giới không chỉ là quyền cơ bản của con người mà còn là nền tảng cần thiết cho một thế giới hòa bình, thịnh vượng và bền vững.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Huong Can Senior High School.        
B. Global Teacher Prize.
C. top 50 finalists 2020.            
D. Ha Anh Phuong.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP