Câu hỏi:

14/01/2026 6 Lưu

Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y + 2z + 3 = 0\] và hai đường thẳng \[{d_1}:\frac{x}{3} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{1}\];\[{d_2}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 3}}{1}\]. Xét các điểm \[A,\,B\] lần lượt di động trên \[{d_1}\]\[{d_2}\] sao cho \[AB\] song song với mặt phẳng \[\left( P \right)\]. Tập hợp trung điểm của đoạn thẳng \(AB\) là:

     A. Một đường thẳng có vectơ chỉ phương \(\overrightarrow u = \left( { - 9;8; - 5} \right)\).
     B. Một đường thẳng có vectơ chỉ phương \(\overrightarrow u = \left( { - 5;9;8} \right)\).
     C. Một đường thẳng có vectơ chỉ phương \(\overrightarrow u = \left( {1; - 2; - 5} \right)\).
     D. Một đường thẳng có vectơ chỉ phương \(\overrightarrow u = \left( {1;5; - 2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(A \in {d_1} \Rightarrow A\left( {3a;1 - a; - 1 + a} \right)\); \(B \in {d_2} \Rightarrow B\left( {2 + b;1 - 2b; - 3 + b} \right)\).

\(\overrightarrow {AB} = \left( {2 + b - 3a; - 2b + a;b - 2 - a} \right)\); \({\vec n_{\left( P \right)}} = \left( {2; - 1;2} \right)\).

Do \[AB\,{\rm{//}}\,\left( P \right)\] nên \[\overrightarrow {AB} \cdot {\vec n_{\left( P \right)}} = 0 \Leftrightarrow a = \frac{2}{3}b\].

Tọa độ trung điểm của đoạn thẳng \[AB\]\(I\left( {\frac{{3a + 2 + b}}{2};\frac{{2 - 2b - a}}{2};\frac{{ - 4 + a + b}}{2}} \right)\)

hay \(I\left( {1 + \frac{3}{2}b;1 - \frac{8}{6}b; - 2 + \frac{5}{6}b} \right)\).

Suy ra tập hợp điểm I là một đường thẳng \(\left\{ \begin{array}{l}x = 1 + \frac{3}{2}b\\y = 1 - \frac{8}{6}b\\z = - 2 + \frac{5}{6}b\end{array} \right.\).

Ta có \( - 6\left( {\frac{3}{2}; - \frac{8}{6};\frac{5}{6}} \right) = \left( { - 9;8; - 5} \right)\). Vậy tập hợp trung điểm của đoạn thẳng \(AB\) là một đường thẳng có vectơ chỉ phương \(\overrightarrow u = \left( { - 9;8; - 5} \right)\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(k = 620;\,\,a = 2,758\).        
B. \(k = 620;\,\,a = 0,138\).   
  C. \(k = 620;\,\,a = 1,05\).   
D. \(k = 620;\,\,a = 1,052\).

Lời giải

Khi \(d = 0\) thì \(F = 620\) và khi \(d = 20\) thì \(F = 1710\).

Ta có hệ phương trình: \(\left\{ \begin{array}{l}620 = k{a^0}\\1710 = k{a^{20}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\{a^{20}} = \frac{{1710}}{{620}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\a = \sqrt[{20}]{{\frac{{1710}}{{620}}}} \approx 1,052\end{array} \right.\).

Vậy \(k = 620;\,\,a = 1,052\). Chọn D.

Lời giải

Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).

Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).

Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)

Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.

Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)\(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.

\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.

Câu 3

A. \[\left( { - \infty ; - 1} \right)\]. 
B. \(\left( { - \infty \,;\,1} \right)\).    
C. \(\left( { - 1\,;\,1} \right)\).               
D. \(\left( {4\,;\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = {x^2}\].  
B. \[y = {x^3} - 3x + 4\].     
C. \[y = \frac{{2x + 1}}{{x - 1}}\].   
D. \[y = \frac{{{x^2} - x + 1}}{{x - 1}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP