Câu hỏi:

14/01/2026 7 Lưu

Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 4 tấm thẻ từ hộp. Xác suất để tổng số ghi trên 4 tấm thẻ ấy là một số lẻ là:

 

A. \(\frac{5}{6}\).   
 B. \(\frac{6}{{33}}\).
C. \(\frac{{16}}{{33}}\).   
D. \(\frac{{17}}{{33}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta \(n\left( \Omega \right) = C_{11}^4 = 330\).

Gọi biến cố \(A\): “Tổng số ghi trên 4 tấm thẻ ấy là một số lẻ”.

Từ 1 đến 11 có 6 số lẻ và 5 số chẵn. Để có tổng của 4 số là một số lẻ ta có 2 trường hợp.

Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 3 thẻ mang số chẵn có: \(C_6^1 \cdot C_5^3 = 60\) cách.

Trường hợp 2: Chọn được 3 thẻ mang số lẻ và 1 thẻ mang số chẵn có: \(C_6^3 \cdot C_5^1 = 100\) cách.

Do đó \(n\left( A \right) = 60 + 100 = 160\). Vậy \(P\left( A \right) = \frac{{160}}{{330}} = \frac{{16}}{{33}}\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(k = 620;\,\,a = 2,758\).        
B. \(k = 620;\,\,a = 0,138\).   
  C. \(k = 620;\,\,a = 1,05\).   
D. \(k = 620;\,\,a = 1,052\).

Lời giải

Khi \(d = 0\) thì \(F = 620\) và khi \(d = 20\) thì \(F = 1710\).

Ta có hệ phương trình: \(\left\{ \begin{array}{l}620 = k{a^0}\\1710 = k{a^{20}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\{a^{20}} = \frac{{1710}}{{620}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\a = \sqrt[{20}]{{\frac{{1710}}{{620}}}} \approx 1,052\end{array} \right.\).

Vậy \(k = 620;\,\,a = 1,052\). Chọn D.

Lời giải

Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).

Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).

Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)

Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.

Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)\(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.

\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left( { - \infty ; - 1} \right)\]. 
B. \(\left( { - \infty \,;\,1} \right)\).    
C. \(\left( { - 1\,;\,1} \right)\).               
D. \(\left( {4\,;\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP