Cho một hộp kín có 6 thẻ ATM của BIDV và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của BIDV.
Cho một hộp kín có 6 thẻ ATM của BIDV và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của BIDV.
Quảng cáo
Trả lời:
Gọi A là biến cố “lần thứ hai lấy được thẻ ATM Vietcombank”, B là biến cố “lần thứ nhất lấy được thẻ ATM của BIDV”. Ta cần tìm \[P\left( {A|B} \right)\].
Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Vietcombank) nên \[P\left( {A|B} \right) = \frac{4}{9}\]. Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Khi \(d = 0\) thì \(F = 620\) và khi \(d = 20\) thì \(F = 1710\).
Ta có hệ phương trình: \(\left\{ \begin{array}{l}620 = k{a^0}\\1710 = k{a^{20}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\{a^{20}} = \frac{{1710}}{{620}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\a = \sqrt[{20}]{{\frac{{1710}}{{620}}}} \approx 1,052\end{array} \right.\).
Vậy \(k = 620;\,\,a = 1,052\). Chọn D.
Câu 2
Lời giải
Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).
Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).
Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)
Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.
Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)và \(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.
\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


