Câu hỏi:

14/01/2026 6 Lưu

Người ta điều tra thấy ở một địa phương nọ có 2% tài xế sử dụng điện thoại di động khi lái xe. Trong các vụ tai nạn ở địa phương đó, người ta nhận thấy có 10% là do tài xế có sử dụng điện thoại khi lái xe gây ra. Hỏi việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên bao nhiêu lần (nhập đáp án vào ô trống, làm tròn kết quả đến hàng phần trăm)?

Đáp án  _____

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 5,44

Gọi A là biến cố “Tài xế gây tai nạn” và B là biến cố “Tài xế sử dụng điện thoại di động khi lái xe”. Theo đề ta có \({\rm{P}}\left( {\rm{B}} \right) = 0,02;\,\,{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}} \right) = 0,1\).

Suy ra \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 0,98;\,\,P\left( {\bar B\mid A} \right) = 1 - P\left( {B\mid A} \right) = 0,9\).

Đặt \(P\left( {A\mid B} \right) = x;\,\,P\left( {A\mid \bar B} \right) = y\). Theo công thức xác suất toàn phần, ta có:

\(P\left( A \right) = P\left( B \right) \cdot P\left( {A\mid B} \right) + P\left( {\bar B} \right) \cdot P\left( {A\mid \bar B} \right) = 0,02 \cdot x + 0,98 \cdot y\).

\(P\left( {B\mid A} \right) = \frac{{P\left( B \right) \cdot P\left( {A\mid B} \right)}}{{P\left( A \right)}} \Leftrightarrow 0,1 = \frac{{0,02x}}{{0,02x + 0,98y}} \Leftrightarrow 0,02x + 0,98y = 0,2x\)\( \Rightarrow y = \frac{9}{{49}}x\).

Ta có \(\frac{{P\left( {A\mid B} \right)}}{{P\left( {A\mid \bar B} \right)}} = \frac{x}{y} = \frac{x}{{\frac{9}{{49}}x}} = \frac{{49}}{9} \approx 5,44\).

Vậy việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên 5,44 lần.

Đáp án cần nhập là: \(5,44\).          

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(k = 620;\,\,a = 2,758\).        
B. \(k = 620;\,\,a = 0,138\).   
  C. \(k = 620;\,\,a = 1,05\).   
D. \(k = 620;\,\,a = 1,052\).

Lời giải

Khi \(d = 0\) thì \(F = 620\) và khi \(d = 20\) thì \(F = 1710\).

Ta có hệ phương trình: \(\left\{ \begin{array}{l}620 = k{a^0}\\1710 = k{a^{20}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\{a^{20}} = \frac{{1710}}{{620}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 620\\a = \sqrt[{20}]{{\frac{{1710}}{{620}}}} \approx 1,052\end{array} \right.\).

Vậy \(k = 620;\,\,a = 1,052\). Chọn D.

Lời giải

Gọi biến cố \({A_i}\): “Lần bắn thứ \(i\) trúng đích” với \(i = 1,\,2\).

Biến cố \(\overline {{A_i}} \): “Lần bắn thứ \(i\) không trúng đích” với \(i = 1,\,2\).

Ta có \(P\left( {{A_1}} \right) = \,0,7;\,\,P\left( {{A_2}} \right) = \,0,8;\,\,P\left( {\overline {{A_1}} } \right) = \,0,3;\,\,P\left( {\overline {{A_2}} } \right) = \,0,2.\)

Gọi biến cố \(B\): “Cả hai lần bắn đều không trúng đích”.

Ta có \(B = \overline {{A_1}} \overline {{A_2}} \)\(\overline {{A_1}} ;\,\,\overline {{A_2}} \)là hai biến cố độc lập.

\( \Rightarrow P\left( B \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} } \right) = 0,3 \cdot 0,2 = 0,06.\) Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( { - \infty ; - 1} \right)\]. 
B. \(\left( { - \infty \,;\,1} \right)\).    
C. \(\left( { - 1\,;\,1} \right)\).               
D. \(\left( {4\,;\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP