Gọi \[S\] là tập hợp tất cả các giá trị nguyên dương của tham số \[m\] để bất phương trình \[{x^6} + 3{x^4} - {m^3}{x^3} + 4{x^2} - mx + 2 \ge 0\] đúng với mọi \[x \in \left[ {1;3} \right]\]. Tổng của tất cả các phần tử thuộc \[S\] bằng:
Quảng cáo
Trả lời:
Bất phương trình đã cho đúng với mọi \[x \in \left[ {1;3} \right]\]\[ \Leftrightarrow {\left( {{x^2} + 1} \right)^3} + {x^2} + 1 \ge {\left( {mx} \right)^3} + mx\], \[\forall x \in \left[ {1;3} \right]\].
Xét hàm số: \[f\left( t \right) = {t^3} + t \Rightarrow f'\left( t \right) = 3{t^2} + 1 > 0\]\[\,\forall t \in \mathbb{R}\]. Vậy \[f\left( t \right)\] đồng biến trên \[\mathbb{R}\].
Suy ra bất phương trình đã cho đúng với mọi \[x \in \left[ {1;3} \right]\]\[ \Leftrightarrow f\left( {{x^2} + 1} \right) \ge f\left( {mx} \right);\,\forall x \in \left[ {1;3} \right]\] \[ \Leftrightarrow m \le \frac{{{x^2} + 1}}{x}\] \[\forall x \in \left[ {1;3} \right]\]\[ \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {1;3} \right]} \frac{{{x^2} + 1}}{x}\]\[ \Leftrightarrow m \le 2\].
Vì tham số \[m\] nguyên dương suy ra \[S = \left\{ {1;\,2} \right\}\].
Vậy tổng tất cả các phần tử thuộc \[S\] bằng \(3\). Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Tìm hiểu các phương thức biểu đạt:
- Hành chính công vụ: Trình bày ý muốn, quyết định nào đó, thể hiện quyền hạn, trách nhiệm giữa người với người.
- Nghị luận: Nêu ý kiến đánh giá, bàn luận.
- Thuyết minh: Giới thiệu đặc điểm, tính chất, phương pháp.
- Tự sự: Kể lại diễn biến sự việc.
→ Đoạn trích bàn luận về cách để con người có được hạnh phúc trong cuộc đời. Chọn B.
Câu 2
Lời giải
Đoạn trích trên được viết theo phương thức nghị luận. Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
