Câu hỏi:

15/01/2026 10 Lưu

Một hộp đựng bảy thẻ màu xanh đánh số từ 1 đến 7; năm thẻ màu đỏ đánh số từ 1 đến 5 và hai thẻ màu vàng đánh số từ 1 đến 2. Rút ngẫu nhiên ra một tấm thẻ.

a) Số phần tử không gian mẫu là 14.
Đúng
Sai
b) Xác suất để thẻ được rút ra được thẻ màu đỏ hoặc màu vàng bằng \(\frac{1}{{14}}\).
Đúng
Sai
c) Xác suất để thẻ được rút ra đánh số chia hết cho 3 là \(\frac{3}{{14}}\).
Đúng
Sai
d) Xác suất để thẻ được rút ra mang số 1 là \(\frac{5}{{14}}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Số phần tử không gian mẫu là 14.

b) Gọi \(A\) là biến cố “thẻ được rút ra được thẻ màu đỏ hoặc màu vàng”.

Khi đó \(n\left( A \right) = 5 + 2 = 7\).

Do đó \(P\left( A \right) = \frac{7}{{14}} = \frac{1}{2}\).

c) Gọi \(B\) là biến cố “thẻ được rút ra đánh số chia hết cho 3”.

Trong 14 thẻ có 3 thẻ chia hết cho 3\( \Rightarrow n\left( B \right) = 3\).

Do đó \(P\left( B \right) = \frac{3}{{14}}\).

d) Gọi \(C\) là biến cố “thẻ được rút ra mang số 1”.

Trong 14 thẻ có 3 thẻ mang số 1 \( \Rightarrow n\left( C \right) = 3\).

Do đó \(P\left( C \right) = \frac{3}{{14}}\).

Đáp án: a) Đúng;    b) Sai;     c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số phần tử của không gian mẫu là 90.
Đúng
Sai
b) Xác suất để rút được hai tấm thẻ được đánh số cùng chia hết cho 2 là \(\frac{2}{9}\).
Đúng
Sai
c) Xác suất để rút được hai tấm thẻ được đánh số đều là số nguyên tố là \(\frac{1}{{15}}\).
Đúng
Sai
d) Xác suất để rút được hai tấm thẻ có tổng là một số lẻ là \(\frac{5}{9}\).
Đúng
Sai

Lời giải

a) Số phần tử của không gian mẫu là \(C_{10}^2 = 45\).

b) Gọi \(A\) là biến cố “hai tấm thẻ được đánh số cùng chia hết hết cho 2”.

Các số chia hết cho 2 là \(\left\{ {2;4;6;8;10} \right\} \Rightarrow n\left( A \right) = C_5^2 = 10\).

Do đó \(P\left( A \right) = \frac{{10}}{{45}} = \frac{2}{9}\).

c) Gọi \(B\) là biến cố “hai tấm thẻ được đánh số đều là số nguyên tố”.

Các số nguyên tố là \(\left\{ {2;3;5;7} \right\}\)\( \Rightarrow n\left( B \right) = C_4^2 = 6\).

Do đó \(P\left( B \right) = \frac{6}{{45}} = \frac{2}{{15}}\).

d) Gọi \(C\) là biến cố “hai tấm thẻ có tổng là một số lẻ”.

Từ 1 đến 10 có 5 số chẵn và 5 số lẻ.

Để tổng 2 số là số lẻ thì cần lấy được 1 số chẵn và số lẻ. Khi đó \(n\left( C \right) = C_5^1 \cdot C_5^1 = 25\).

Do đó \(P\left( C \right) = \frac{{25}}{{45}} = \frac{5}{9}\).

Đáp án: a) Sai;    b) Đúng;     c) Sai;    d) Đúng.

Lời giải

Số phần tử của không gian mẫu là \(8! = 40320\).

Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.

TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.

TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.

Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).

Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).

Trả lời: 0,03.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP