Gieo ngẫu nhiên một con xúc xắc cân đối, đồng chất ba lần. Xác suất để trong ba lần gieo đó có ít nhất một lần xuất hiện mặt 2 chấm là \(\frac{a}{b}\)(\(\frac{a}{b}\) là phân số tối giản). Tính \(b - a\).
Gieo ngẫu nhiên một con xúc xắc cân đối, đồng chất ba lần. Xác suất để trong ba lần gieo đó có ít nhất một lần xuất hiện mặt 2 chấm là \(\frac{a}{b}\)(\(\frac{a}{b}\) là phân số tối giản). Tính \(b - a\).
Quảng cáo
Trả lời:
Đáp án:
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = {6^3} = 216\).
Gọi \(A\) là biến cố “Ba lần gieo có ít nhất một lần xuất hiện mặt 2 chấm”.
Xét \(\overline A \) là biến cố “Ba lần gieo không xuất hiện mặt 2 chấm”.
Khi đó \(n\left( {\overline A } \right) = {5^3} = 125\).
Suy ra \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{125}}{{216}} = \frac{{91}}{{216}}\). Suy ra \(a = 91;b = 216 \Rightarrow b - a = 125\).
Trả lời: 125.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\overline A = \left\{ {1;3;5;7} \right\}\).
Lời giải
\(\overline A \) là biến cố “Thẻ được chọn mang số lẻ” \( \Rightarrow \overline A = \left\{ {1;3;5;7;9} \right\}\). Chọn C.
Câu 2
Lời giải
a) Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 90\).
b) Gọi \(B\) là biến cố “Lấy được một số tự nhiên chẵn”.
Từ 10 đến 99 có 45 số chẵn và 45 số lẻ. Khi đó \(n\left( B \right) = 45\).
Khi đó \(P\left( B \right) = \frac{{45}}{{90}} = \frac{1}{2}\).
c) Gọi \(C\) là biến cố “Lấy được số tự nhiên chia hết cho 3”.
Từ 10 đến 99 có 30 số chia hết cho 3 \( \Rightarrow n\left( C \right) = 30\). Do đó \(P\left( C \right) = \frac{{30}}{{90}} = \frac{1}{3}\).
d) Gọi \(D\) là biến cố “Lấy được số có hai chữ số khác nhau”.
Xét \(\overline D \) là biến cố “Lấy được số có hai chữ số giống nhau”.
Ta có \(\overline D = \left\{ {11;22;33;44;55;66;77;88;99} \right\} \Rightarrow n\left( {\overline D } \right) = 9\).
Do đó \(P\left( D \right) = 1 - \frac{9}{{90}} = \frac{9}{{10}}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\frac{{560}}{{4199}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.