Câu hỏi:

16/01/2026 8 Lưu

Cho các mệnh đề sau:

(I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông ấy đồng dạng.

(II) Nếu một cạnh góc vuông của tam giác vuông này bằng một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông ấy đồng dạng.

Khẳng định nào sau đây là đúng?

A. Chỉ có (I) đúng.  
B. Chỉ có (II) đúng.
C. (I) và (II) đều đúng.
D. (I) và (II) đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông ấy đồng dạng. Do đó mệnh đề (I) là đúng.

Mệnh đề (II) là sai vì khi sử dụng điều kiện về cạnh thì ta cần ít nhất hai cặp tỉ số cạnh bằng nhau.

Vậy chỉ có (I) là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8 cm. Kẻ đường cao AH a) Chứng minh  tam giác ABC đồng dạng tam giác HAB (ảnh 1)

a) Xét \(\Delta ABC\) và \(\Delta HBA\) có:

\(\widehat {BAC} = \widehat {BHA} = 90^\circ \) và \(\widehat B\) là góc chung.

Do đó  ΔABCΔHBA(g.g).

b) Vì tam giác \(ABC\) vuông tại \(A,\) theo định lí Pythagore ta có: \(B{C^2} = A{B^2} + A{C^2} = {6^2} + {8^2} = 100.\)

Suy ra \(BC = 10{\rm{\;cm}}.\) Theo câu a),  nên \(\frac{{AC}}{{HA}} = \frac{{BC}}{{AB}}\) (tỉ số cạnh tương ứng).

Suy ra \(AH = \frac{{AB \cdot AC}}{{BC}} = \frac{{6 \cdot 8}}{{10}} = 4,8{\rm{\;cm}}{\rm{.}}\)

c) Xét \(\Delta ACD\) và \(\Delta HCE\) có:

\(\widehat {DAC} = \widehat {EHC} = 90^\circ \) và \(\widehat {ACD} = \widehat {HCE}\) (do \(CD\) là tia phân giác của \(\widehat {ACB}).\)

Do đó ΔACDΔHCE (g.g).

Suy ra \[\frac{{AC}}{{HC}} = \frac{{AD}}{{HE}}\] (tỉ số cạnh tương ứng) nên \[\frac{{AC}}{{AD}} = \frac{{HC}}{{HE}}\] (*)

d) ⦁ Chứng minh tương tự câu a), ta cũng có:  ΔCAHΔCBA (g.g).

Mà ΔABCΔHBA hay ΔCBAΔABH  nên ΔABHΔCAH  ΔCBA.

Suy ra \[\frac{{BH}}{{AH}} = \frac{{AB}}{{CA}}\] (tỉ số cạnh tương ứng), do đó \[BH = \frac{{AB}}{{AC}} \cdot AH = \frac{6}{8} \cdot 4,8 = 3,6{\rm{\;cm}}.\]

Khi đó \[HC = BC - BH = 10 - 3,6 = 6,4{\rm{\;cm}}.\]

⦁ Ta có \(CD\) là phân giác \(\widehat {ACB}\) nên \(\frac{{CA}}{{CB}} = \frac{{DA}}{{DB}},\) do đó \[\frac{{AC}}{{AD}} = \frac{{BC}}{{BD}}.\]

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\[\frac{{AC}}{{AD}} = \frac{{BC}}{{BD}} = \frac{{AC + BC}}{{AD + BD}} = \frac{{AC + BC}}{{AB}} = \frac{{8 + 10}}{6} = 3.\]

Suy ra \(AD = \frac{{AC}}{3} = \frac{8}{3}{\rm{\;cm}}\) và \[\frac{{HC}}{{HE}} = \frac{{AC}}{{AD}} = 3.\]

Khi đó \[HE = \frac{{HC}}{3} = \frac{{6,4}}{3} = \frac{{32}}{{15}}.\]

Ta có \[\frac{{{S_{\Delta ACD}}}}{{{S_{\Delta HCE}}}} = \frac{{\frac{1}{2}AD \cdot AC}}{{\frac{1}{2}HE \cdot HC}} = \frac{{AD \cdot AC}}{{HE \cdot HC}} = \frac{{\frac{8}{3} \cdot 8}}{{\frac{{32}}{{15}} \cdot 6,4}} = \frac{{25}}{{16}}.\]

Lời giải

Hướng dẫn giải

Đổi \(20\)phút \[ = \frac{1}{3}\] giờ.

Gọi quãng đường AB là \[x\] (km) \(\left( {x > 0} \right).\)

Thời gian đi từ A đến B là \(\frac{x}{{40}}\) (giờ).

Lúc về người đó tăng vận tốc thêm \(5\) km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\] (km/h).

Thời gian đi từ B về A là \(\frac{x}{{45}}\) (giờ).

Vì thời gian lúc về ít hơn thời gian lúc đi là \(20\) phút \[( = \frac{1}{3}\] giờ) nên ta có phương trình:

\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)

\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{{120}}{{360}}\)

\(9x - 8x = 120\)

\(x = 120\) (thỏa mãn).

Vậy quãng đường AB là \(120\) km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{CD}}{{CB}} = \frac{{CA}}{{CE}}.\)                
B.  ΔCDEΔABC.
C. \[DC \cdot EC = DB \cdot EA.\]         
D. \(CD \cdot CA = CB \cdot CE.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP