Tam giác \(ABC\) cân tại \(A,\) \(AB = AC = 100{\rm{\;cm}},\) \(BC = 120{\rm{\;cm}},\) các đường cao \(AD\) và \(BE\) cắt nhau tại \(H.\)
a) Tính độ dài đoạn thẳng \(AD.\)
b) Chứng minh
c) Tính độ dài đoạn thẳng \(HD,\,\,HB.\)
d) Tính độ dài đoạn thẳng \(HE.\)
Tam giác \(ABC\) cân tại \(A,\) \(AB = AC = 100{\rm{\;cm}},\) \(BC = 120{\rm{\;cm}},\) các đường cao \(AD\) và \(BE\) cắt nhau tại \(H.\)
a) Tính độ dài đoạn thẳng \(AD.\)
b) Chứng minh
c) Tính độ dài đoạn thẳng \(HD,\,\,HB.\)
d) Tính độ dài đoạn thẳng \(HE.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a) Xét \(\Delta ABC\) cân tại \(A\) có đường cao \(AD\) nên đồng thời là đường trung tuyến, đo dó
\(BD = CD = \frac{1}{2}BC = \frac{1}{2} \cdot 120 = 60{\rm{\;cm}}.\)
Áp dụng định lí Pythagore cho \(\Delta ABD\) vuông tại \(D,\) ta có:\(A{B^2} = A{D^2} + B{D^2},\) suy ra \(A{D^2} = A{B^2} - B{D^2} = {100^2} - {60^2} = 6\,\,400.\)
Do đó \(AD = \sqrt {6\,\,400} = 80{\rm{\;cm}}.\)
b) Xét \(\Delta BDH\) và \(\Delta ADC\) có:
\(\widehat {BDH} = \widehat {ADC} = 90^\circ \) và \(\widehat {HBD} = \widehat {DAC}\) (cùng phụ với \(\widehat {ECB}).\)
Do đó (g.g).
c) Theo câu b, suy ra \(\widehat {BHD} = \widehat {ACD}\) (hai góc tương ứng).
Mà \(\widehat {ABD} = \widehat {ACD}\) (do \(\Delta ABC\) cân tại \(A),\) nên \(\widehat {BHD} = \widehat {ABD}.\)
Xét \(\Delta BDH\) và \(\Delta ADB\) có:
\(\widehat {BDH} = \widehat {ADB} = 90^\circ \) và \(\widehat {BHD} = \widehat {ABD}\)
Do đó (g.g).
Suy ra \(\frac{{BD}}{{AD}} = \frac{{BH}}{{AB}} = \frac{{DH}}{{DB}}\) (tỉ số cạnh tương ứng).
Hay \(\frac{{60}}{{80}} = \frac{{BH}}{{100}} = \frac{{DH}}{{60}},\) suy ra \(BH = \frac{{60 \cdot 100}}{{80}} = 75{\rm{\;cm}}\) và \(DH = \frac{{60 \cdot 60}}{{80}} = 45{\rm{\;cm}}.\)
d) Ta có \(AH = AD - DH = 80 - 45 = 35{\rm{\;cm}}.\)
Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat {BDH} = \widehat {BEC} = 90^\circ \) và \(\widehat {EBC}\) là góc chung.
Do đó (g.g).
Xét \(\Delta BDH\) và \(\Delta AEH\) có:
\(\widehat {BDH} = \widehat {AHE} = 90^\circ \) và \(\widehat {BHD} = \widehat {AHE}\) (đối đỉnh).
Do đó (g.g).
Mà nên
Do đó \(\frac{{HE}}{{BD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng), hay \(\frac{{HE}}{{60}} = \frac{{35}}{{100}},\) suy ra \(HE = \frac{{60 \cdot 35}}{{100}} = 21{\rm{\;cm}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Hình chữ nhật có chu vi bằng 100 m nên có nửa chu vi là \(\frac{{100}}{2} = 50\) (m).
Gọi chiều rộng ban đầu của hình chữ nhật là \(x\) (m) \(\left( {0 < x < 50} \right).\)
Khi đó chiều dài của hình chữ nhật là: \(50 - x\) (m).
Diện tích lúc đầu của hình chữ nhật là: \(x\left( {50 - x} \right)\) (m2).
Nếu tăng chiều rộng thêm 10 m thì chiều rộng mới là \(x + 10\) (m).
Nếu giảm chiều dài đi 10 m thì chiều dài mới là \(50 - x - 10 = 40 - x\) (m).
Khi đó, diện tích của hình chữ nhật là: \(\left( {x + 10} \right)\left( {40 - x} \right)\) (m2).
Sau khi thay đổi kích thước thì diện tích hình chữ nhật không thay đổi nên ta có phương trình:
\(x\left( {50 - x} \right) = \left( {x + 10} \right)\left( {40 - x} \right)\)
\(50x - {x^2} = 40x - {x^2} + 400 - 10x\)
\(50x - 40x + 10x = 400\)
\(20x = 400\)
\(x = 20\) (thỏa mãn).
Vậy diện tích lúc đầu của hình chữ nhật là: \(20 \cdot \left( {50 - 20} \right) = 600\;\) (m2).
Lời giải
Hướng dẫn giải
Với \(a \ne - b;\,\,b \ne - c;\,\,c \ne - a\) ta xét \(\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} = 1.\) \(\left( 1 \right)\)
Do \(a \ne - b;\,\,b \ne - c;\,\,c \ne - a\) nên \(a + b + c \ne 0.\)
Khi đó ta nhân hai vế của \(\left( 1 \right)\) với \(a + b + c\) thì được:
\(\frac{{a\left( {a + b + c} \right)}}{{b + c}} + \frac{{b\left( {a + b + c} \right)}}{{c + a}} + \frac{{c\left( {a + b + c} \right)}}{{a + b}} = a + b + c\)
Hay \(\frac{{{a^2} + a\left( {b + c} \right)}}{{b + c}} + \frac{{{b^2} + b\left( {a + c} \right)}}{{c + a}} + \frac{{{c^2} + c\left( {a + b} \right)}}{{a + b}} = a + b + c\)
Nên \(\frac{{{a^2}}}{{b + c}} + a + \frac{{{b^2}}}{{c + a}} + b + \frac{{{c^2}}}{{a + b}} + c = a + b + c\)
Suy ra \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)
Vậy \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.