Tam giác \(ABC\) cân tại \(A,\) \(AB = AC = 100{\rm{\;cm}},\) \(BC = 120{\rm{\;cm}},\) các đường cao \(AD\) và \(BE\) cắt nhau tại \(H.\)
a) Tính độ dài đoạn thẳng \(AD.\)
b) Chứng minh
c) Tính độ dài đoạn thẳng \(HD,\,\,HB.\)
d) Tính độ dài đoạn thẳng \(HE.\)
Tam giác \(ABC\) cân tại \(A,\) \(AB = AC = 100{\rm{\;cm}},\) \(BC = 120{\rm{\;cm}},\) các đường cao \(AD\) và \(BE\) cắt nhau tại \(H.\)
a) Tính độ dài đoạn thẳng \(AD.\)
b) Chứng minh
c) Tính độ dài đoạn thẳng \(HD,\,\,HB.\)
d) Tính độ dài đoạn thẳng \(HE.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a) Xét \(\Delta ABC\) cân tại \(A\) có đường cao \(AD\) nên đồng thời là đường trung tuyến, đo dó
\(BD = CD = \frac{1}{2}BC = \frac{1}{2} \cdot 120 = 60{\rm{\;cm}}.\)
Áp dụng định lí Pythagore cho \(\Delta ABD\) vuông tại \(D,\) ta có:\(A{B^2} = A{D^2} + B{D^2},\) suy ra \(A{D^2} = A{B^2} - B{D^2} = {100^2} - {60^2} = 6\,\,400.\)
Do đó \(AD = \sqrt {6\,\,400} = 80{\rm{\;cm}}.\)
b) Xét \(\Delta BDH\) và \(\Delta ADC\) có:
\(\widehat {BDH} = \widehat {ADC} = 90^\circ \) và \(\widehat {HBD} = \widehat {DAC}\) (cùng phụ với \(\widehat {ECB}).\)
Do đó (g.g).
c) Theo câu b, suy ra \(\widehat {BHD} = \widehat {ACD}\) (hai góc tương ứng).
Mà \(\widehat {ABD} = \widehat {ACD}\) (do \(\Delta ABC\) cân tại \(A),\) nên \(\widehat {BHD} = \widehat {ABD}.\)
Xét \(\Delta BDH\) và \(\Delta ADB\) có:
\(\widehat {BDH} = \widehat {ADB} = 90^\circ \) và \(\widehat {BHD} = \widehat {ABD}\)
Do đó (g.g).
Suy ra \(\frac{{BD}}{{AD}} = \frac{{BH}}{{AB}} = \frac{{DH}}{{DB}}\) (tỉ số cạnh tương ứng).
Hay \(\frac{{60}}{{80}} = \frac{{BH}}{{100}} = \frac{{DH}}{{60}},\) suy ra \(BH = \frac{{60 \cdot 100}}{{80}} = 75{\rm{\;cm}}\) và \(DH = \frac{{60 \cdot 60}}{{80}} = 45{\rm{\;cm}}.\)
d) Ta có \(AH = AD - DH = 80 - 45 = 35{\rm{\;cm}}.\)
Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat {BDH} = \widehat {BEC} = 90^\circ \) và \(\widehat {EBC}\) là góc chung.
Do đó (g.g).
Xét \(\Delta BDH\) và \(\Delta AEH\) có:
\(\widehat {BDH} = \widehat {AHE} = 90^\circ \) và \(\widehat {BHD} = \widehat {AHE}\) (đối đỉnh).
Do đó (g.g).
Mà nên
Do đó \(\frac{{HE}}{{BD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng), hay \(\frac{{HE}}{{60}} = \frac{{35}}{{100}},\) suy ra \(HE = \frac{{60 \cdot 35}}{{100}} = 21{\rm{\;cm}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Với \(a \ne - b;\,\,b \ne - c;\,\,c \ne - a\) ta xét \(\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} = 1.\) \(\left( 1 \right)\)
Do \(a \ne - b;\,\,b \ne - c;\,\,c \ne - a\) nên \(a + b + c \ne 0.\)
Khi đó ta nhân hai vế của \(\left( 1 \right)\) với \(a + b + c\) thì được:
\(\frac{{a\left( {a + b + c} \right)}}{{b + c}} + \frac{{b\left( {a + b + c} \right)}}{{c + a}} + \frac{{c\left( {a + b + c} \right)}}{{a + b}} = a + b + c\)
Hay \(\frac{{{a^2} + a\left( {b + c} \right)}}{{b + c}} + \frac{{{b^2} + b\left( {a + c} \right)}}{{c + a}} + \frac{{{c^2} + c\left( {a + b} \right)}}{{a + b}} = a + b + c\)
Nên \(\frac{{{a^2}}}{{b + c}} + a + \frac{{{b^2}}}{{c + a}} + b + \frac{{{c^2}}}{{a + b}} + c = a + b + c\)
Suy ra \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)
Vậy \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Điều kiện xác định của phân thức \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}}\) là \({x^2} - 2x + 1 \ne 0,\) hay \({\left( {x - 1} \right)^2} \ne 0,\) tức là \(x \ne 1.\)
Ta có \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}} = 0\) khi và chỉ khi \({x^2} - 1 = 0,\) suy ra \(x = 1\) (không thỏa mãn) hoặc \(x = - 1\) (thỏa mãn).
Vậy \(x = - 1.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.