Đọc đoạn trích sau đây và trả lời câu hỏi:
Lơ thơ cồn nhỏ gió đìu hiu,
Đâu tiếng làng xa vãn chợ chiều,
Nắng xuống, trời lên sâu chót vót;
Sông dài, trời rộng, bến cô liêu.
(Trích Tràng giang – Huy Cận)
Đâu là cách hiểu đúng về cụm từ “sâu chót vót” trong đoạn thơ trên?
Quảng cáo
Trả lời:
Cụm từ “sâu chót vót” trong đoạn thơ trên được hiểu là không gian được mở rộng ra ba chiều: cao, sâu, rộng, nhấn mạnh sự mênh mông của không gian và làm nổi bật hình ảnh con người bé nhỏ, rợn ngợp trước vũ trụ bao la. “Sâu chót vót” là một trong những từ thể hiện rõ cách kết hợp từ đầy độc đáo, sáng tạo của Huy Cận trong việc làm sáng tỏ tâm tư, tình cảm của mình. Cụm từ này được tác giả sử dụng để miêu tả bầu trời xanh, cao, rộng. Từ “sâu” gợi lên một độ cao, gợi lên cái hun hút, thăm thẳm của bầu trời hoàng hôn hay nó chính là biểu tượng cho vũ trụ bao la, rộng lớn, rợn ngợp; kết hợp với tính từ “chót vót” càng làm tăng thêm sự cao, xa vời vợi, thăm thẳm của bầu trời. Đứng trước khung cảnh tráng lệ, mênh mông ấy, con người càng trở lên nhỏ bé, cô đơn, mơ hồ với nỗi niềm “bâng khuâng” khó tả trước một không gian rộng lớn. Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Tam thức bậc hai \(f\left( x \right) = {x^2} + 2mx + m - 2\) có:
\(\Delta ' = {m^2} - m + 2 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4} > 0\) với mọi \(m \in \mathbb{R}\).
Do đó \(f\left( x \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) với mọi \(m \in \mathbb{R}\).
Để \(f\left( x \right) < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\) thì \({x_1} \le 1 < 2 \le {x_2}\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f\left( 1 \right) \le 0}\\{f\left( 2 \right) \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m + m - 2 \le 0}\\{4 + 4m + m - 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3m - 1 \le 0}\\{5m + 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{m \le \frac{{ - 2}}{5}}\end{array}} \right. \Leftrightarrow m \le \frac{{ - 2}}{5}\].
Vậy \(m \le \frac{{ - 2}}{5}\) thì \({x^2} + 2mx + m - 2 < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Được ưu tiên đầu tư, có khả năng phát triển các ngành mới và lan tỏa đến lãnh thổ khác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.