Có bao nhiêu nhận định sau đây sai khi nói về huyết áp và vận tốc máu trong hệ mạch?
I. Trong hệ mạch ở người trưởng thành, huyết áp trong động mạch chủ gần như bằng 0.
II. Vận tốc máu ở mao mạch là nhỏ nhất, đảm bảo cho sự trao đổi chất giữa máu và tế bào.
III. Khi cơ thể bị mất máu hoặc tiêu chảy kéo dài sẽ làm huyết áp tăng.
IV. Huyết áp động mạch của người thường được đo ở cánh tay.
Quảng cáo
Trả lời:
Các nhận định II, IV đúng.
I. Sai. Trong hệ mạch ở người trưởng thành, huyết áp trong tĩnh mạch chủ gần như bằng 0 còn huyết áp ở động mạch chủ đạt giá trị lớn nhất.
III. Sai. Khi cơ thể bị mất máu hoặc tiêu chảy (mất nước) kéo dài, thể tích máu sẽ giảm kéo theo huyết áp giảm.
Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Tam thức bậc hai \(f\left( x \right) = {x^2} + 2mx + m - 2\) có:
\(\Delta ' = {m^2} - m + 2 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4} > 0\) với mọi \(m \in \mathbb{R}\).
Do đó \(f\left( x \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) với mọi \(m \in \mathbb{R}\).
Để \(f\left( x \right) < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\) thì \({x_1} \le 1 < 2 \le {x_2}\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f\left( 1 \right) \le 0}\\{f\left( 2 \right) \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m + m - 2 \le 0}\\{4 + 4m + m - 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3m - 1 \le 0}\\{5m + 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{m \le \frac{{ - 2}}{5}}\end{array}} \right. \Leftrightarrow m \le \frac{{ - 2}}{5}\].
Vậy \(m \le \frac{{ - 2}}{5}\) thì \({x^2} + 2mx + m - 2 < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Được ưu tiên đầu tư, có khả năng phát triển các ngành mới và lan tỏa đến lãnh thổ khác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
C. \[\frac{{x - 2}}{2} = \frac{{y - 3}}{{ - 1}} = \frac{{z + 2}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.