Để tạo giống cây trồng có kiểu gene đồng hợp tử về tất cả các cặp gene, người ta thường sử dụng phương pháp nào sau đây?
Để tạo giống cây trồng có kiểu gene đồng hợp tử về tất cả các cặp gene, người ta thường sử dụng phương pháp nào sau đây?
Quảng cáo
Trả lời:
A. Sai. Lai khác dòng sẽ tạo ra con lai có kiểu gene dị hợp về tất cả các cặp gene chứ không tạo ra dòng thuần chủng.
B. Sai. Sử dụng công nghệ gene chỉ cho phép chuyển gene chứ không tạo ra được dòng thuần.
C. Sai. Lai tế bào soma khác loài sẽ tạo ra cơ thể mang bộ nhiễm sắc thể của 2 loài, sẽ không tạo ra dòng thuần chủng khi 2 tế bào soma đem lai không thuần chủng. Ví dụ lai tế bào soma có kiểu gene AaBb với tế bào soma có kiểu gene DdEe thì sẽ tạo ra tế bào lại có kiểu gene AaBbDdEe.
D. Đúng. Nuôi cấy hạt phấn sẽ tạo nên dòng tế bào đơn bội, sau đó lưỡng bội hóa sẽ tạo nên dòng thuần chủng về tất cả các cặp gene. Ví dụ khi nuôi hạt phấn của cây có kiểu gene AaBb thì sẽ thu được 4 dòng đơn bội là dòng tế bào AB, dòng tế bào Ab, dòng tế bào aB, dòng tế bào ab. Tiến hành gây lưỡng bội hóa các dòng tế bào này thì sẽ thu được các dòng thuần chủng lần lượt là: AABB, aaBB, AAbb, aabb.
Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Tam thức bậc hai \(f\left( x \right) = {x^2} + 2mx + m - 2\) có:
\(\Delta ' = {m^2} - m + 2 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4} > 0\) với mọi \(m \in \mathbb{R}\).
Do đó \(f\left( x \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) với mọi \(m \in \mathbb{R}\).
Để \(f\left( x \right) < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\) thì \({x_1} \le 1 < 2 \le {x_2}\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f\left( 1 \right) \le 0}\\{f\left( 2 \right) \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m + m - 2 \le 0}\\{4 + 4m + m - 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3m - 1 \le 0}\\{5m + 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{m \le \frac{{ - 2}}{5}}\end{array}} \right. \Leftrightarrow m \le \frac{{ - 2}}{5}\].
Vậy \(m \le \frac{{ - 2}}{5}\) thì \({x^2} + 2mx + m - 2 < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Được ưu tiên đầu tư, có khả năng phát triển các ngành mới và lan tỏa đến lãnh thổ khác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
C. \[\frac{{x - 2}}{2} = \frac{{y - 3}}{{ - 1}} = \frac{{z + 2}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.