Một quần thể đang cân bằng di truyền, quá trình nào sau đây sẽ làm tăng tính đa dạng của quần thể?
Một quần thể đang cân bằng di truyền, quá trình nào sau đây sẽ làm tăng tính đa dạng của quần thể?
Quảng cáo
Trả lời:
- Đột biến sẽ tạo ra các allele mới; Giao phối ngẫu nhiên tổ hợp các allele làm xuất hiện vô số biến dị tổ hợp. Vì vậy, đột biến kết hợp với giao phối ngẫu nhiên sẽ làm tăng tính đa dạng di truyền của quần thể.
- CLTN loại bỏ các allele có hại và kiểu gene có hại nên CLTN làm giảm tính đa dạng di truyền của quần thể.
- Giao phối không ngẫu nhiên làm giảm tính đa dạng di truyền của quần thể vì giao phối không ngẫu nhiên làm giảm tỉ lệ kiểu gene dị hợp trong quần thể.
- Các yếu tố ngẫu nhiên loại bỏ ngẫu nhiên các kiểu gene và allele trong quần thể nên làm giảm tính đa dạng di truyền của quần thể.
Chọn B.Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Tam thức bậc hai \(f\left( x \right) = {x^2} + 2mx + m - 2\) có:
\(\Delta ' = {m^2} - m + 2 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4} > 0\) với mọi \(m \in \mathbb{R}\).
Do đó \(f\left( x \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) với mọi \(m \in \mathbb{R}\).
Để \(f\left( x \right) < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\) thì \({x_1} \le 1 < 2 \le {x_2}\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f\left( 1 \right) \le 0}\\{f\left( 2 \right) \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m + m - 2 \le 0}\\{4 + 4m + m - 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3m - 1 \le 0}\\{5m + 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{m \le \frac{{ - 2}}{5}}\end{array}} \right. \Leftrightarrow m \le \frac{{ - 2}}{5}\].
Vậy \(m \le \frac{{ - 2}}{5}\) thì \({x^2} + 2mx + m - 2 < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Được ưu tiên đầu tư, có khả năng phát triển các ngành mới và lan tỏa đến lãnh thổ khác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
C. \[\frac{{x - 2}}{2} = \frac{{y - 3}}{{ - 1}} = \frac{{z + 2}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.