Sơ đồ phả hệ dưới đây mô tả sự di truyền bệnh mù màu và bệnh máu khó đông ở người.

Mỗi bệnh do 1 trong 2 allele của 1 gene nằm ở vùng không tương đồng trên NST giới tính X quy định, 2 gene này cách nhau 20 cM. Theo lí thuyết, xác suất sinh con bị cả 2 bệnh của cặp 6 - 7 là bao nhiêu (nhập đáp án vào ô trống)?
Đáp án _____
Quảng cáo
Trả lời:
- Bệnh mù màu và bệnh máu khó đông đều do gene lặn nằm trên NST giới tính X quy định → Quy ước gene: A - bình thường >> a - bị mù màu; B - bình thường >> b - bị máu khó đông.
- Hai gene này cách nhau 20 cM → Xảy ra hiện tượng hoán vị gene với tần số 20%.
- Xác định kiểu gene của từng người trong phả hệ:
+ Người số 3 sinh con trai (5) bị máu khó đông nên phải có\(X_b^A\) và nhận\(X_B^a\)của bố (2) nên có kiểu gene là \(X_b^AX_B^a\).
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
(A-, Bb) |
\(X_B^aY\) |
\(X_b^AX_B^a\) |
\(X_B^aY\) |
\(X_b^AY\) |
\(X_ - ^AX_B^a\) |
\(X_B^AY\) |
+ Để cặp (6) - (7) sinh con bị 2 bệnh thì kiểu gene của người (6) phải là \(X_b^AX_B^a\) với xác suất 0,8 (Người số (6) bình thường nhận\(X_B^a\)của bố (4) và có mẹ (3) có kiểu gene\(X_b^AX_B^a\)với tần số hoán vị 20% nên xác suất kiểu gene của người (6) là 0,1\(X_B^AX_B^a\): 0,4\(X_b^AX_B^a\)).
Vậy cặp (6) - (7): \(0,8X_b^AX_B^a \times X_B^AY \to X_b^aY = 0,8 \times 0,1X_b^a \times 0,5Y = 0,04.\) Đáp án: 0,04.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Tam thức bậc hai \(f\left( x \right) = {x^2} + 2mx + m - 2\) có:
\(\Delta ' = {m^2} - m + 2 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4} > 0\) với mọi \(m \in \mathbb{R}\).
Do đó \(f\left( x \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) với mọi \(m \in \mathbb{R}\).
Để \(f\left( x \right) < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\) thì \({x_1} \le 1 < 2 \le {x_2}\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f\left( 1 \right) \le 0}\\{f\left( 2 \right) \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m + m - 2 \le 0}\\{4 + 4m + m - 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3m - 1 \le 0}\\{5m + 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{m \le \frac{{ - 2}}{5}}\end{array}} \right. \Leftrightarrow m \le \frac{{ - 2}}{5}\].
Vậy \(m \le \frac{{ - 2}}{5}\) thì \({x^2} + 2mx + m - 2 < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Được ưu tiên đầu tư, có khả năng phát triển các ngành mới và lan tỏa đến lãnh thổ khác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
C. \[\frac{{x - 2}}{2} = \frac{{y - 3}}{{ - 1}} = \frac{{z + 2}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.